科普特字体的光学字符识别:学术版的多源方法

E. Lincke, Kirill Bulert, Marco Büchler
{"title":"科普特字体的光学字符识别:学术版的多源方法","authors":"E. Lincke, Kirill Bulert, Marco Büchler","doi":"10.1145/3322905.3322931","DOIUrl":null,"url":null,"abstract":"In this paper, we show that the OCR engine Ocropy can be trained for fonts used in rather complex and varied Coptic typeset. For each of the three fonts presented in this paper, we used a number of texts from scholarly editions with different philological and editorial standards and texts from two different dialects of Coptic (Bohairic and Sahidic). Despite the complexity of the training data, we observed accuracy rates of 97.5%, for one font even up to 99%.","PeriodicalId":418911,"journal":{"name":"Proceedings of the 3rd International Conference on Digital Access to Textual Cultural Heritage","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical Character Recognition for Coptic fonts: A multi-source approach for scholarly editions\",\"authors\":\"E. Lincke, Kirill Bulert, Marco Büchler\",\"doi\":\"10.1145/3322905.3322931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show that the OCR engine Ocropy can be trained for fonts used in rather complex and varied Coptic typeset. For each of the three fonts presented in this paper, we used a number of texts from scholarly editions with different philological and editorial standards and texts from two different dialects of Coptic (Bohairic and Sahidic). Despite the complexity of the training data, we observed accuracy rates of 97.5%, for one font even up to 99%.\",\"PeriodicalId\":418911,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Digital Access to Textual Cultural Heritage\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Digital Access to Textual Cultural Heritage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3322905.3322931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Digital Access to Textual Cultural Heritage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3322905.3322931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们展示了OCR引擎Ocropy可以训练用于相当复杂和变化的科普特排版的字体。对于本文中提出的三种字体中的每一种,我们都使用了许多来自不同语言学和编辑标准的学术版本的文本,以及来自两种不同的科普特方言(波海里克语和萨希迪语)的文本。尽管训练数据很复杂,但我们观察到准确率达到97.5%,一种字体甚至达到99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optical Character Recognition for Coptic fonts: A multi-source approach for scholarly editions
In this paper, we show that the OCR engine Ocropy can be trained for fonts used in rather complex and varied Coptic typeset. For each of the three fonts presented in this paper, we used a number of texts from scholarly editions with different philological and editorial standards and texts from two different dialects of Coptic (Bohairic and Sahidic). Despite the complexity of the training data, we observed accuracy rates of 97.5%, for one font even up to 99%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信