{"title":"利用稀疏探测数据估计主干道交通状况","authors":"R. Herring, A. Hofleitner, P. Abbeel, A. Bayen","doi":"10.1109/ITSC.2010.5624994","DOIUrl":null,"url":null,"abstract":"Estimating and predicting traffic conditions in arterial networks using probe data has proven to be a substantial challenge. In the United States, sparse probe data represents the vast majority of the data available on arterial roads in most major urban environments. This article proposes a probabilistic modeling framework for estimating and predicting arterial travel time distributions using sparsely observed probe vehicles. We evaluate our model using data from a fleet of 500 taxis in San Francisco, CA, which send GPS data to our server every minute. The sampling rate does not provide detailed information about where vehicles encountered delay or the reason for any delay (i.e. signal delay, congestion delay, etc.). Our model provides an increase in estimation accuracy of 35% when compared to a baseline approach for processing probe vehicle data.","PeriodicalId":176645,"journal":{"name":"13th International IEEE Conference on Intelligent Transportation Systems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"218","resultStr":"{\"title\":\"Estimating arterial traffic conditions using sparse probe data\",\"authors\":\"R. Herring, A. Hofleitner, P. Abbeel, A. Bayen\",\"doi\":\"10.1109/ITSC.2010.5624994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating and predicting traffic conditions in arterial networks using probe data has proven to be a substantial challenge. In the United States, sparse probe data represents the vast majority of the data available on arterial roads in most major urban environments. This article proposes a probabilistic modeling framework for estimating and predicting arterial travel time distributions using sparsely observed probe vehicles. We evaluate our model using data from a fleet of 500 taxis in San Francisco, CA, which send GPS data to our server every minute. The sampling rate does not provide detailed information about where vehicles encountered delay or the reason for any delay (i.e. signal delay, congestion delay, etc.). Our model provides an increase in estimation accuracy of 35% when compared to a baseline approach for processing probe vehicle data.\",\"PeriodicalId\":176645,\"journal\":{\"name\":\"13th International IEEE Conference on Intelligent Transportation Systems\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"218\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"13th International IEEE Conference on Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2010.5624994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"13th International IEEE Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2010.5624994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Estimating arterial traffic conditions using sparse probe data
Estimating and predicting traffic conditions in arterial networks using probe data has proven to be a substantial challenge. In the United States, sparse probe data represents the vast majority of the data available on arterial roads in most major urban environments. This article proposes a probabilistic modeling framework for estimating and predicting arterial travel time distributions using sparsely observed probe vehicles. We evaluate our model using data from a fleet of 500 taxis in San Francisco, CA, which send GPS data to our server every minute. The sampling rate does not provide detailed information about where vehicles encountered delay or the reason for any delay (i.e. signal delay, congestion delay, etc.). Our model provides an increase in estimation accuracy of 35% when compared to a baseline approach for processing probe vehicle data.