利用稀疏探测数据估计主干道交通状况

R. Herring, A. Hofleitner, P. Abbeel, A. Bayen
{"title":"利用稀疏探测数据估计主干道交通状况","authors":"R. Herring, A. Hofleitner, P. Abbeel, A. Bayen","doi":"10.1109/ITSC.2010.5624994","DOIUrl":null,"url":null,"abstract":"Estimating and predicting traffic conditions in arterial networks using probe data has proven to be a substantial challenge. In the United States, sparse probe data represents the vast majority of the data available on arterial roads in most major urban environments. This article proposes a probabilistic modeling framework for estimating and predicting arterial travel time distributions using sparsely observed probe vehicles. We evaluate our model using data from a fleet of 500 taxis in San Francisco, CA, which send GPS data to our server every minute. The sampling rate does not provide detailed information about where vehicles encountered delay or the reason for any delay (i.e. signal delay, congestion delay, etc.). Our model provides an increase in estimation accuracy of 35% when compared to a baseline approach for processing probe vehicle data.","PeriodicalId":176645,"journal":{"name":"13th International IEEE Conference on Intelligent Transportation Systems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"218","resultStr":"{\"title\":\"Estimating arterial traffic conditions using sparse probe data\",\"authors\":\"R. Herring, A. Hofleitner, P. Abbeel, A. Bayen\",\"doi\":\"10.1109/ITSC.2010.5624994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating and predicting traffic conditions in arterial networks using probe data has proven to be a substantial challenge. In the United States, sparse probe data represents the vast majority of the data available on arterial roads in most major urban environments. This article proposes a probabilistic modeling framework for estimating and predicting arterial travel time distributions using sparsely observed probe vehicles. We evaluate our model using data from a fleet of 500 taxis in San Francisco, CA, which send GPS data to our server every minute. The sampling rate does not provide detailed information about where vehicles encountered delay or the reason for any delay (i.e. signal delay, congestion delay, etc.). Our model provides an increase in estimation accuracy of 35% when compared to a baseline approach for processing probe vehicle data.\",\"PeriodicalId\":176645,\"journal\":{\"name\":\"13th International IEEE Conference on Intelligent Transportation Systems\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"218\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"13th International IEEE Conference on Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2010.5624994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"13th International IEEE Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2010.5624994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 218

摘要

利用探针数据估计和预测干线网络的交通状况已被证明是一项重大挑战。在美国,稀疏探针数据代表了大多数主要城市环境中主干道上的绝大多数可用数据。本文提出了一个概率建模框架,用于估计和预测使用稀疏观测探测车辆的动脉旅行时间分布。我们使用来自加利福尼亚州旧金山500辆出租车车队的数据来评估我们的模型,这些出租车每分钟都会向我们的服务器发送GPS数据。采样率不提供车辆遇到延迟的详细信息或任何延迟的原因(即信号延迟,拥堵延迟等)。与处理探测车辆数据的基线方法相比,我们的模型提供了35%的估计精度提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating arterial traffic conditions using sparse probe data
Estimating and predicting traffic conditions in arterial networks using probe data has proven to be a substantial challenge. In the United States, sparse probe data represents the vast majority of the data available on arterial roads in most major urban environments. This article proposes a probabilistic modeling framework for estimating and predicting arterial travel time distributions using sparsely observed probe vehicles. We evaluate our model using data from a fleet of 500 taxis in San Francisco, CA, which send GPS data to our server every minute. The sampling rate does not provide detailed information about where vehicles encountered delay or the reason for any delay (i.e. signal delay, congestion delay, etc.). Our model provides an increase in estimation accuracy of 35% when compared to a baseline approach for processing probe vehicle data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信