{"title":"基于机器学习的恶意双AP检测方法提高Wi-Fi网络的可靠性","authors":"Jeonghoon Seo, Chaeho Cho, Yoojae Won","doi":"10.3745/JIPS.03.0137","DOIUrl":null,"url":null,"abstract":"Wireless networks have become integral to society as they provide mobility and scalability advantages. However, their disadvantage is that they cannot control the media, which makes them vulnerable to various types of attacks. One example of such attacks is the evil twin access point (AP) attack, in which an authorized AP is impersonated by mimicking its service set identifier (SSID) and media access control (MAC) address. Evil twin APs are a major source of deception in wireless networks, facilitating message forgery and eavesdropping. Hence, it is necessary to detect them rapidly. To this end, numerous methods using clock skew have been proposed for evil twin AP detection. However, clock skew is difficult to calculate precisely because wireless networks are vulnerable to noise. This paper proposes an evil twin AP detection method that uses a multiple-feature-based machine learning classification algorithm. The features used in the proposed method are clock skew, channel, received signal strength, and duration. The results of experiments conducted indicate that the proposed method has an evil twin AP detection accuracy of 100% using the random forest algorithm.","PeriodicalId":415161,"journal":{"name":"J. Inf. Process. Syst.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Enhancing the Reliability of Wi-Fi Network Using Evil Twin AP Detection Method Based on Machine Learning\",\"authors\":\"Jeonghoon Seo, Chaeho Cho, Yoojae Won\",\"doi\":\"10.3745/JIPS.03.0137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless networks have become integral to society as they provide mobility and scalability advantages. However, their disadvantage is that they cannot control the media, which makes them vulnerable to various types of attacks. One example of such attacks is the evil twin access point (AP) attack, in which an authorized AP is impersonated by mimicking its service set identifier (SSID) and media access control (MAC) address. Evil twin APs are a major source of deception in wireless networks, facilitating message forgery and eavesdropping. Hence, it is necessary to detect them rapidly. To this end, numerous methods using clock skew have been proposed for evil twin AP detection. However, clock skew is difficult to calculate precisely because wireless networks are vulnerable to noise. This paper proposes an evil twin AP detection method that uses a multiple-feature-based machine learning classification algorithm. The features used in the proposed method are clock skew, channel, received signal strength, and duration. The results of experiments conducted indicate that the proposed method has an evil twin AP detection accuracy of 100% using the random forest algorithm.\",\"PeriodicalId\":415161,\"journal\":{\"name\":\"J. Inf. Process. Syst.\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Inf. Process. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3745/JIPS.03.0137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Process. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/JIPS.03.0137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing the Reliability of Wi-Fi Network Using Evil Twin AP Detection Method Based on Machine Learning
Wireless networks have become integral to society as they provide mobility and scalability advantages. However, their disadvantage is that they cannot control the media, which makes them vulnerable to various types of attacks. One example of such attacks is the evil twin access point (AP) attack, in which an authorized AP is impersonated by mimicking its service set identifier (SSID) and media access control (MAC) address. Evil twin APs are a major source of deception in wireless networks, facilitating message forgery and eavesdropping. Hence, it is necessary to detect them rapidly. To this end, numerous methods using clock skew have been proposed for evil twin AP detection. However, clock skew is difficult to calculate precisely because wireless networks are vulnerable to noise. This paper proposes an evil twin AP detection method that uses a multiple-feature-based machine learning classification algorithm. The features used in the proposed method are clock skew, channel, received signal strength, and duration. The results of experiments conducted indicate that the proposed method has an evil twin AP detection accuracy of 100% using the random forest algorithm.