基于绝对内积的同步信号最优估计及其在整合基因组学中的应用

T. Cai, Hongzhe Li, Mark G. Low, Rong Ma
{"title":"基于绝对内积的同步信号最优估计及其在整合基因组学中的应用","authors":"T. Cai, Hongzhe Li, Mark G. Low, Rong Ma","doi":"10.5705/ss.202019.0445","DOIUrl":null,"url":null,"abstract":"Integrating the summary statistics from genome-wide association study (GWAS) and expression quantitative trait loci (eQTL) data provides a powerful way of identifying the genes whose expression levels are causally associated with complex diseases. A parameter that quantifies the genetic sharing (colocalisation) between disease phenotype and gene expression of a given gene based on the summary statistics is first introduced based on the mean values of two Gaussian sequences. Specifically, given two independent samples $X\\sim N(\\theta, I_n)$ and $Y\\sim N(\\mu, I_n)$, the parameter of interest is $T(\\theta, \\mu)=n^{-1}\\sum_{i=1}^n |\\theta_i|\\cdot |\\mu_i|$, a non-smooth functional, which characterizes the degree of shared signals between two absolute normal mean vectors $|\\theta|$ and $|\\mu|$. Using approximation theory and Hermite polynomials, a sparse absolute colocalisation estimator (SpACE) is constructed and shown to be minimax rate optimal over sparse parameter spaces. Our simulation demonstrates that the proposed estimates out-perform other naive methods, resulting in smaller estimation errors. In addition, the methods are robust to the presence of block-wise correlated observations due to linkage equilibrium. The method is applied to an integrative analysis of heart failure genomics data sets and identifies several genes and biological pathways that are possibly causal to human heart failure.","PeriodicalId":186390,"journal":{"name":"arXiv: Methodology","volume":"11 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Estimation of Simultaneous Signals Using Absolute Inner Product with Applications to Integrative Genomics\",\"authors\":\"T. Cai, Hongzhe Li, Mark G. Low, Rong Ma\",\"doi\":\"10.5705/ss.202019.0445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrating the summary statistics from genome-wide association study (GWAS) and expression quantitative trait loci (eQTL) data provides a powerful way of identifying the genes whose expression levels are causally associated with complex diseases. A parameter that quantifies the genetic sharing (colocalisation) between disease phenotype and gene expression of a given gene based on the summary statistics is first introduced based on the mean values of two Gaussian sequences. Specifically, given two independent samples $X\\\\sim N(\\\\theta, I_n)$ and $Y\\\\sim N(\\\\mu, I_n)$, the parameter of interest is $T(\\\\theta, \\\\mu)=n^{-1}\\\\sum_{i=1}^n |\\\\theta_i|\\\\cdot |\\\\mu_i|$, a non-smooth functional, which characterizes the degree of shared signals between two absolute normal mean vectors $|\\\\theta|$ and $|\\\\mu|$. Using approximation theory and Hermite polynomials, a sparse absolute colocalisation estimator (SpACE) is constructed and shown to be minimax rate optimal over sparse parameter spaces. Our simulation demonstrates that the proposed estimates out-perform other naive methods, resulting in smaller estimation errors. In addition, the methods are robust to the presence of block-wise correlated observations due to linkage equilibrium. The method is applied to an integrative analysis of heart failure genomics data sets and identifies several genes and biological pathways that are possibly causal to human heart failure.\",\"PeriodicalId\":186390,\"journal\":{\"name\":\"arXiv: Methodology\",\"volume\":\"11 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5705/ss.202019.0445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5705/ss.202019.0445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

整合来自全基因组关联研究(GWAS)和表达数量性状位点(eQTL)数据的汇总统计数据,为鉴定表达水平与复杂疾病因果相关的基因提供了一种强有力的方法。首先,基于两个高斯序列的平均值,引入了基于汇总统计的定量给定基因的疾病表型和基因表达之间的遗传共享(共定位)的参数。具体来说,给定两个独立样本$X\sim N(\theta, I_n)$和$Y\sim N(\mu, I_n)$,感兴趣的参数是$T(\theta, \mu)=n^{-1}\sum_{i=1}^n |\theta_i|\cdot |\mu_i|$,这是一个非光滑泛函,表征两个绝对正态均值向量$|\theta|$和$|\mu|$之间共享信号的程度。利用逼近理论和Hermite多项式构造了一个稀疏绝对共定位估计量(SpACE),并证明了其在稀疏参数空间上的极大极小率最优性。我们的模拟表明,所提出的估计优于其他朴素的方法,导致更小的估计误差。此外,由于链接平衡,该方法对存在块相关观测值具有鲁棒性。该方法被应用于心力衰竭基因组数据集的综合分析,并确定了可能导致人类心力衰竭的几个基因和生物学途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Estimation of Simultaneous Signals Using Absolute Inner Product with Applications to Integrative Genomics
Integrating the summary statistics from genome-wide association study (GWAS) and expression quantitative trait loci (eQTL) data provides a powerful way of identifying the genes whose expression levels are causally associated with complex diseases. A parameter that quantifies the genetic sharing (colocalisation) between disease phenotype and gene expression of a given gene based on the summary statistics is first introduced based on the mean values of two Gaussian sequences. Specifically, given two independent samples $X\sim N(\theta, I_n)$ and $Y\sim N(\mu, I_n)$, the parameter of interest is $T(\theta, \mu)=n^{-1}\sum_{i=1}^n |\theta_i|\cdot |\mu_i|$, a non-smooth functional, which characterizes the degree of shared signals between two absolute normal mean vectors $|\theta|$ and $|\mu|$. Using approximation theory and Hermite polynomials, a sparse absolute colocalisation estimator (SpACE) is constructed and shown to be minimax rate optimal over sparse parameter spaces. Our simulation demonstrates that the proposed estimates out-perform other naive methods, resulting in smaller estimation errors. In addition, the methods are robust to the presence of block-wise correlated observations due to linkage equilibrium. The method is applied to an integrative analysis of heart failure genomics data sets and identifies several genes and biological pathways that are possibly causal to human heart failure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信