增强认知无线电服务质量的稳健意识模型

A. Periola, O. Falowo
{"title":"增强认知无线电服务质量的稳健意识模型","authors":"A. Periola, O. Falowo","doi":"10.1109/PIMRC.2016.7794894","DOIUrl":null,"url":null,"abstract":"Cognitive radios (CRs) use learning algorithms (LAs) located in the cognition engine (CE) to adapt their behaviour. CRs use LAs for spectrum prediction to enhance their quality of service (QoS). The CR's CE consumes battery power while classifying LAs. The LA classification reduces CR data transmission power and limits CR throughput. This paper proposes a framework to enhance CR QoS in LTE-Advanced (LTE-A). The proposed framework reduces battery power expended in LA classification and increases CR data transmission power. It introduces the radio resource control (RRC); RRC_COGNITIVE state in which the CR pauses LA classification. The framework's performance is evaluated using the CR transmit power and throughput. Simulations show that the proposed framework reduces LA classification power by 65 % on average. The reduction of LA classification power enhances CR transmit power. The CR throughput is enhanced by 23% and 80% when CRs are and are not secondary users (SUs) respectively.","PeriodicalId":137845,"journal":{"name":"2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A robust conscious model for enhancing cognitive radio quality of service\",\"authors\":\"A. Periola, O. Falowo\",\"doi\":\"10.1109/PIMRC.2016.7794894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cognitive radios (CRs) use learning algorithms (LAs) located in the cognition engine (CE) to adapt their behaviour. CRs use LAs for spectrum prediction to enhance their quality of service (QoS). The CR's CE consumes battery power while classifying LAs. The LA classification reduces CR data transmission power and limits CR throughput. This paper proposes a framework to enhance CR QoS in LTE-Advanced (LTE-A). The proposed framework reduces battery power expended in LA classification and increases CR data transmission power. It introduces the radio resource control (RRC); RRC_COGNITIVE state in which the CR pauses LA classification. The framework's performance is evaluated using the CR transmit power and throughput. Simulations show that the proposed framework reduces LA classification power by 65 % on average. The reduction of LA classification power enhances CR transmit power. The CR throughput is enhanced by 23% and 80% when CRs are and are not secondary users (SUs) respectively.\",\"PeriodicalId\":137845,\"journal\":{\"name\":\"2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIMRC.2016.7794894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.2016.7794894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

认知无线电(CRs)使用位于认知引擎(CE)中的学习算法(LAs)来调整其行为。cr使用LAs进行频谱预测,以提高服务质量(QoS)。CR的CE在对LAs进行分类时消耗电池电量。LA分级降低了CR的数据传输功率,限制了CR的吞吐量。本文提出了一种增强LTE-A (LTE-A)中CR QoS的框架。该框架减少了LA分类时的电池电量消耗,提高了CR数据传输功率。介绍了无线电资源控制(RRC);rrc_认知状态,CR暂停LA分类。利用CR传输功率和吞吐量对该框架的性能进行了评价。仿真结果表明,该框架平均降低了65%的LA分类功率。LA分级功率的降低提高了CR发射功率。当CR为辅助用户(secondary user)和非辅助用户(secondary user)时,CR的吞吐量分别提高23%和80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A robust conscious model for enhancing cognitive radio quality of service
Cognitive radios (CRs) use learning algorithms (LAs) located in the cognition engine (CE) to adapt their behaviour. CRs use LAs for spectrum prediction to enhance their quality of service (QoS). The CR's CE consumes battery power while classifying LAs. The LA classification reduces CR data transmission power and limits CR throughput. This paper proposes a framework to enhance CR QoS in LTE-Advanced (LTE-A). The proposed framework reduces battery power expended in LA classification and increases CR data transmission power. It introduces the radio resource control (RRC); RRC_COGNITIVE state in which the CR pauses LA classification. The framework's performance is evaluated using the CR transmit power and throughput. Simulations show that the proposed framework reduces LA classification power by 65 % on average. The reduction of LA classification power enhances CR transmit power. The CR throughput is enhanced by 23% and 80% when CRs are and are not secondary users (SUs) respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信