涡轮发电机定子槽导热系数

M. Miller
{"title":"涡轮发电机定子槽导热系数","authors":"M. Miller","doi":"10.1109/EEIC.1999.826181","DOIUrl":null,"url":null,"abstract":"Thermal power dissipation from vacuum pressure impregnated stator coils to the stator core in turbine generators is a topic of technical importance. In order to increase turbine generator MVA output by increasing current through the coil wire strands, there must be improved thermal conductivity in the stator slot to improve thermal power dissipation capability. A benchmark study of vacuum pressure impregnation (VPI) and global vacuum pressure impregnation (GVPI) stator coil groundwall insulation has been investigated in a previous paper (1997). This paper builds on the model showing a relationship between the stator coil groundwall insulation composition and thermal conductivity. This paper looks at improving the stator slot thermal conductivity by increasing the thermal conductivity of the stator coil groundwall insulation and the region between the stator coil and the core. The models generated provide a design tool which can estimate the thermal conductivity in the stator slot, from the coil wire strands to the core.","PeriodicalId":415071,"journal":{"name":"Proceedings: Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Conference (Cat. No.99CH37035)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Turbine generator stator slot thermal conductivity\",\"authors\":\"M. Miller\",\"doi\":\"10.1109/EEIC.1999.826181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal power dissipation from vacuum pressure impregnated stator coils to the stator core in turbine generators is a topic of technical importance. In order to increase turbine generator MVA output by increasing current through the coil wire strands, there must be improved thermal conductivity in the stator slot to improve thermal power dissipation capability. A benchmark study of vacuum pressure impregnation (VPI) and global vacuum pressure impregnation (GVPI) stator coil groundwall insulation has been investigated in a previous paper (1997). This paper builds on the model showing a relationship between the stator coil groundwall insulation composition and thermal conductivity. This paper looks at improving the stator slot thermal conductivity by increasing the thermal conductivity of the stator coil groundwall insulation and the region between the stator coil and the core. The models generated provide a design tool which can estimate the thermal conductivity in the stator slot, from the coil wire strands to the core.\",\"PeriodicalId\":415071,\"journal\":{\"name\":\"Proceedings: Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Conference (Cat. No.99CH37035)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings: Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Conference (Cat. No.99CH37035)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEIC.1999.826181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings: Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Conference (Cat. No.99CH37035)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEIC.1999.826181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

汽轮发电机定子线圈从真空加压到定子铁心的热功率耗散是一个重要的技术问题。为了提高汽轮发电机的MVA输出,通过增加线圈线股的电流,必须提高定子槽的导热性,以提高热功率的耗散能力。真空压力浸渍(VPI)和整体真空压力浸渍(GVPI)定子线圈接地壁绝缘的基准研究已经在之前的论文(1997)中进行了研究。本文建立了定子线圈接地壁绝缘成分与导热系数关系的模型。本文着眼于通过增加定子线圈地壁绝缘和定子线圈与铁芯之间区域的导热系数来提高定子槽的导热系数。生成的模型提供了一种设计工具,可以估计定子槽中的导热系数,从线圈线束到铁芯。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Turbine generator stator slot thermal conductivity
Thermal power dissipation from vacuum pressure impregnated stator coils to the stator core in turbine generators is a topic of technical importance. In order to increase turbine generator MVA output by increasing current through the coil wire strands, there must be improved thermal conductivity in the stator slot to improve thermal power dissipation capability. A benchmark study of vacuum pressure impregnation (VPI) and global vacuum pressure impregnation (GVPI) stator coil groundwall insulation has been investigated in a previous paper (1997). This paper builds on the model showing a relationship between the stator coil groundwall insulation composition and thermal conductivity. This paper looks at improving the stator slot thermal conductivity by increasing the thermal conductivity of the stator coil groundwall insulation and the region between the stator coil and the core. The models generated provide a design tool which can estimate the thermal conductivity in the stator slot, from the coil wire strands to the core.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信