Shunsuke Kogure, Kai Watabe, Ryosuke Yamada, Y. Aoki, Akio Nakamura, Hirokatsu Kataoka
{"title":"年龄无关紧要:通过自我训练实现更准确的行人检测","authors":"Shunsuke Kogure, Kai Watabe, Ryosuke Yamada, Y. Aoki, Akio Nakamura, Hirokatsu Kataoka","doi":"10.3390/cmsf2022003011","DOIUrl":null,"url":null,"abstract":"Why is there a the disparity in the miss rates of pedestrian detection between different age attributes? In this study, we propose to (i) improve the accuracy of pedestrian detection using our pre-trained model and (ii) explore the causes of this disparity. In order to improve detection accuracy, we extend a pedestrian detection pre-training dataset, the Weakly Supervised Pedestrian Dataset (WSPD), by means of self-training, to construct our Self-Trained Person Dataset (STPD). More-over, we hypothesise the cause of the miss rate as being due to three biases: 1) the apparent bias towards “adults” versus “children,” 2) the quantity of training data bias against “chil- dren,” and 3) the scale bias of the bounding box. In addition, we constructed an evaluation dataset by manually annotat- ing “adult” and “child” bounding boxes to the INRIA Person Dataset. As a result, we confirm that the miss rate was re- duced by up to 0.4% for adults and up to 3.9% for children. In addition, we discuss the impact of the size and appearance of the bounding boxes on the disparity in miss rates and pro-vide an outlook for future research.","PeriodicalId":127261,"journal":{"name":"AAAI Workshop on Artificial Intelligence with Biased or Scarce Data (AIBSD)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Age Should Not Matter: Towards More Accurate Pedestrian Detection via Self-Training\",\"authors\":\"Shunsuke Kogure, Kai Watabe, Ryosuke Yamada, Y. Aoki, Akio Nakamura, Hirokatsu Kataoka\",\"doi\":\"10.3390/cmsf2022003011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Why is there a the disparity in the miss rates of pedestrian detection between different age attributes? In this study, we propose to (i) improve the accuracy of pedestrian detection using our pre-trained model and (ii) explore the causes of this disparity. In order to improve detection accuracy, we extend a pedestrian detection pre-training dataset, the Weakly Supervised Pedestrian Dataset (WSPD), by means of self-training, to construct our Self-Trained Person Dataset (STPD). More-over, we hypothesise the cause of the miss rate as being due to three biases: 1) the apparent bias towards “adults” versus “children,” 2) the quantity of training data bias against “chil- dren,” and 3) the scale bias of the bounding box. In addition, we constructed an evaluation dataset by manually annotat- ing “adult” and “child” bounding boxes to the INRIA Person Dataset. As a result, we confirm that the miss rate was re- duced by up to 0.4% for adults and up to 3.9% for children. In addition, we discuss the impact of the size and appearance of the bounding boxes on the disparity in miss rates and pro-vide an outlook for future research.\",\"PeriodicalId\":127261,\"journal\":{\"name\":\"AAAI Workshop on Artificial Intelligence with Biased or Scarce Data (AIBSD)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAAI Workshop on Artificial Intelligence with Biased or Scarce Data (AIBSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cmsf2022003011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAAI Workshop on Artificial Intelligence with Biased or Scarce Data (AIBSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cmsf2022003011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
为什么不同年龄属性的行人检测失检率存在差异?在本研究中,我们建议(i)使用我们的预训练模型提高行人检测的准确性,(ii)探索这种差异的原因。为了提高检测精度,我们扩展了行人检测预训练数据集弱监督行人数据集(WSPD),通过自我训练来构建我们的自我训练人员数据集(STPD)。此外,我们假设缺失率的原因是由于三种偏差:1)对“成人”与“儿童”的明显偏差,2)对“儿童”的训练数据量偏差,以及3)边界框的尺度偏差。此外,我们通过在INRIA Person dataset上手动标注“成人”和“儿童”边界框,构建了一个评估数据集。结果,我们确认,失误率降低了——成人减少了0.4%,儿童减少了3.9%。此外,我们还讨论了边界框的大小和外观对脱靶率差异的影响,并对未来的研究进行了展望。
Age Should Not Matter: Towards More Accurate Pedestrian Detection via Self-Training
Why is there a the disparity in the miss rates of pedestrian detection between different age attributes? In this study, we propose to (i) improve the accuracy of pedestrian detection using our pre-trained model and (ii) explore the causes of this disparity. In order to improve detection accuracy, we extend a pedestrian detection pre-training dataset, the Weakly Supervised Pedestrian Dataset (WSPD), by means of self-training, to construct our Self-Trained Person Dataset (STPD). More-over, we hypothesise the cause of the miss rate as being due to three biases: 1) the apparent bias towards “adults” versus “children,” 2) the quantity of training data bias against “chil- dren,” and 3) the scale bias of the bounding box. In addition, we constructed an evaluation dataset by manually annotat- ing “adult” and “child” bounding boxes to the INRIA Person Dataset. As a result, we confirm that the miss rate was re- duced by up to 0.4% for adults and up to 3.9% for children. In addition, we discuss the impact of the size and appearance of the bounding boxes on the disparity in miss rates and pro-vide an outlook for future research.