潜在类联合选择模型:模型选择、估计、验证和结果解释指南

Friederike Paetz, Maren Hein, P. Kurz, Winfried Steiner
{"title":"潜在类联合选择模型:模型选择、估计、验证和结果解释指南","authors":"Friederike Paetz, Maren Hein, P. Kurz, Winfried Steiner","doi":"10.15358/0344-1369-2019-4-3","DOIUrl":null,"url":null,"abstract":"The consideration of preference heterogeneity in consumer choice behavior has become state of the art. In addition, the identification of consumer segments remains essential for marketing managers. For disaggregate consumer choice data representing the basis of segmentation, the latent class multinomial logit (MNL) model is currently the most popular approach for estimating segment-specific preferences. After addressing the theoretical background of the latent class MNL model, we use an empirical choice-based conjoint data set to illustrate model estimation and validation, as well as how the estimation results should be interpreted. A particular focus lies on the model selection process, i.e. the determination of an appropriate number of segments. We further work out interpretation pitfalls when the existing preference heterogeneity of consumers is ignored. This will ultimately provide a guide for applying the latent class MNL model regarding model selection, estimation, validation, and interpretation of results both from a statistical and managerial perspective.","PeriodicalId":446283,"journal":{"name":"Marketing ZFP","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Latent Class Conjoint Choice Models: A Guide for Model Selection, Estimation, Validation, and Interpretation of Results\",\"authors\":\"Friederike Paetz, Maren Hein, P. Kurz, Winfried Steiner\",\"doi\":\"10.15358/0344-1369-2019-4-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The consideration of preference heterogeneity in consumer choice behavior has become state of the art. In addition, the identification of consumer segments remains essential for marketing managers. For disaggregate consumer choice data representing the basis of segmentation, the latent class multinomial logit (MNL) model is currently the most popular approach for estimating segment-specific preferences. After addressing the theoretical background of the latent class MNL model, we use an empirical choice-based conjoint data set to illustrate model estimation and validation, as well as how the estimation results should be interpreted. A particular focus lies on the model selection process, i.e. the determination of an appropriate number of segments. We further work out interpretation pitfalls when the existing preference heterogeneity of consumers is ignored. This will ultimately provide a guide for applying the latent class MNL model regarding model selection, estimation, validation, and interpretation of results both from a statistical and managerial perspective.\",\"PeriodicalId\":446283,\"journal\":{\"name\":\"Marketing ZFP\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marketing ZFP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15358/0344-1369-2019-4-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marketing ZFP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15358/0344-1369-2019-4-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

考虑消费者选择行为中的偏好异质性已经成为最先进的技术。此外,消费者细分的识别仍然是必不可少的营销经理。对于代表细分基础的非聚合消费者选择数据,潜在类多项logit (MNL)模型是目前估计细分特定偏好最流行的方法。在解决了潜在类MNL模型的理论背景之后,我们使用基于经验选择的联合数据集来说明模型估计和验证,以及如何解释估计结果。特别关注的是模型选择过程,即确定适当数量的片段。在忽略消费者现有偏好异质性的情况下,我们进一步研究了解释陷阱。这将最终为从统计和管理的角度应用潜在类MNL模型提供一个关于模型选择、估计、验证和结果解释的指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Latent Class Conjoint Choice Models: A Guide for Model Selection, Estimation, Validation, and Interpretation of Results
The consideration of preference heterogeneity in consumer choice behavior has become state of the art. In addition, the identification of consumer segments remains essential for marketing managers. For disaggregate consumer choice data representing the basis of segmentation, the latent class multinomial logit (MNL) model is currently the most popular approach for estimating segment-specific preferences. After addressing the theoretical background of the latent class MNL model, we use an empirical choice-based conjoint data set to illustrate model estimation and validation, as well as how the estimation results should be interpreted. A particular focus lies on the model selection process, i.e. the determination of an appropriate number of segments. We further work out interpretation pitfalls when the existing preference heterogeneity of consumers is ignored. This will ultimately provide a guide for applying the latent class MNL model regarding model selection, estimation, validation, and interpretation of results both from a statistical and managerial perspective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信