同步发电机暂态稳定与失磁的神经网络模式分类

A. Sharaf, T. Lie
{"title":"同步发电机暂态稳定与失磁的神经网络模式分类","authors":"A. Sharaf, T. Lie","doi":"10.1109/ICNN.1994.374695","DOIUrl":null,"url":null,"abstract":"The paper presents a novel AI-ANN neural network global online fault detection, pattern classification, and relaying detection scheme for synchronous generators in interconnected electric utility networks. The input discriminant vector comprises the dominant FFT frequency spectra of eighteen input variables forming the discriminant diagnostic hyperplane. The online ANN based relaying scheme classifies fault existence, fault type as either transient stability or loss of excitation, the allowable critical clearing time, and loss of excitation type as either open circuit or short circuit filed condition. The proposed FFT dominant frequency-based hyperplane diagnostic technique can be easily extended to multimachine electric interconnected AC systems.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Neural network pattern classifications of transient stability and loss of excitation for synchronous generators\",\"authors\":\"A. Sharaf, T. Lie\",\"doi\":\"10.1109/ICNN.1994.374695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a novel AI-ANN neural network global online fault detection, pattern classification, and relaying detection scheme for synchronous generators in interconnected electric utility networks. The input discriminant vector comprises the dominant FFT frequency spectra of eighteen input variables forming the discriminant diagnostic hyperplane. The online ANN based relaying scheme classifies fault existence, fault type as either transient stability or loss of excitation, the allowable critical clearing time, and loss of excitation type as either open circuit or short circuit filed condition. The proposed FFT dominant frequency-based hyperplane diagnostic technique can be easily extended to multimachine electric interconnected AC systems.<<ETX>>\",\"PeriodicalId\":209128,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNN.1994.374695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种新的基于AI-ANN神经网络的同步发电机故障在线检测、模式分类和继电保护检测方案。输入判别向量由组成判别诊断超平面的18个输入变量的主导FFT频谱组成。基于在线人工神经网络的继电方案将故障是否存在、故障类型分为暂态稳定或失磁、允许临界清除时间、失磁类型分为开路或短路。所提出的基于FFT优势频率的超平面诊断技术可以很容易地扩展到多机电力互联交流系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network pattern classifications of transient stability and loss of excitation for synchronous generators
The paper presents a novel AI-ANN neural network global online fault detection, pattern classification, and relaying detection scheme for synchronous generators in interconnected electric utility networks. The input discriminant vector comprises the dominant FFT frequency spectra of eighteen input variables forming the discriminant diagnostic hyperplane. The online ANN based relaying scheme classifies fault existence, fault type as either transient stability or loss of excitation, the allowable critical clearing time, and loss of excitation type as either open circuit or short circuit filed condition. The proposed FFT dominant frequency-based hyperplane diagnostic technique can be easily extended to multimachine electric interconnected AC systems.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信