胸腔积液图像的识别研究

I. Veselov, E. Zamyatina, S. Plaksin, L. Farshatova
{"title":"胸腔积液图像的识别研究","authors":"I. Veselov, E. Zamyatina, S. Plaksin, L. Farshatova","doi":"10.1109/AICT47866.2019.8981788","DOIUrl":null,"url":null,"abstract":"early diagnosis of patients' diseases allows to prescribe effective treatment in a timely manner. This article presents the results of research related to the recognition of images of pleural effusions. The purpose of the research is the recognition of images characteristic of pathologies associated with oncological diseases. When recognizing images, convolutional neural networks were used. When developing software, the authors used the TenzorFlow and OpenCV libraries. Image recognition accuracy is 95%. The studies are incomplete; the authors are trying to improve the results of research by replenishing the training sample with new copies of images of pleural effusions and using combinations of pattern recognition methods.","PeriodicalId":329473,"journal":{"name":"2019 IEEE 13th International Conference on Application of Information and Communication Technologies (AICT)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Recognition of Pleural Effusion Images\",\"authors\":\"I. Veselov, E. Zamyatina, S. Plaksin, L. Farshatova\",\"doi\":\"10.1109/AICT47866.2019.8981788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"early diagnosis of patients' diseases allows to prescribe effective treatment in a timely manner. This article presents the results of research related to the recognition of images of pleural effusions. The purpose of the research is the recognition of images characteristic of pathologies associated with oncological diseases. When recognizing images, convolutional neural networks were used. When developing software, the authors used the TenzorFlow and OpenCV libraries. Image recognition accuracy is 95%. The studies are incomplete; the authors are trying to improve the results of research by replenishing the training sample with new copies of images of pleural effusions and using combinations of pattern recognition methods.\",\"PeriodicalId\":329473,\"journal\":{\"name\":\"2019 IEEE 13th International Conference on Application of Information and Communication Technologies (AICT)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 13th International Conference on Application of Information and Communication Technologies (AICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICT47866.2019.8981788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 13th International Conference on Application of Information and Communication Technologies (AICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICT47866.2019.8981788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对患者疾病的早期诊断可以及时开出有效的治疗处方。本文介绍了胸膜积液图像识别的相关研究成果。研究的目的是识别与肿瘤疾病相关的病理特征的图像。在图像识别时,使用卷积神经网络。在开发软件时,作者使用了TenzorFlow和OpenCV库。图像识别准确率为95%。这些研究还不完整;作者正在尝试通过使用新的胸腔积液图像副本来补充训练样本并使用模式识别方法的组合来改进研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Recognition of Pleural Effusion Images
early diagnosis of patients' diseases allows to prescribe effective treatment in a timely manner. This article presents the results of research related to the recognition of images of pleural effusions. The purpose of the research is the recognition of images characteristic of pathologies associated with oncological diseases. When recognizing images, convolutional neural networks were used. When developing software, the authors used the TenzorFlow and OpenCV libraries. Image recognition accuracy is 95%. The studies are incomplete; the authors are trying to improve the results of research by replenishing the training sample with new copies of images of pleural effusions and using combinations of pattern recognition methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信