多维随机微分方程的精确模拟

P. Henry-Labordère, Xiaolu Tan, N. Touzi
{"title":"多维随机微分方程的精确模拟","authors":"P. Henry-Labordère, Xiaolu Tan, N. Touzi","doi":"10.2139/ssrn.2598505","DOIUrl":null,"url":null,"abstract":"We develop a weak exact simulation technique for a process X defined by a multi-dimensional stochastic differential equation (SDE). Namely, for a Lipschitz function g, we propose a simulation based approximation of the expectation E[g(X_{t_1}, \\cdots, X_{t_n})], which by-passes the discretization error. The main idea is to start instead from a well-chosen simulatable SDE whose coefficients are up-dated at independent exponential times. Such a simulatable process can be viewed as a regime-switching SDE, or as a branching diffusion process with one single living particle at all times. In order to compensate for the change of the coefficients of the SDE, our main representation result relies on the automatic differentiation technique induced by Elworthy's formula from Malliavin calculus, as exploited by Fournie et al. for the simulation of the Greeks in financial applications.Unlike the exact simulation algorithm of Beskos and Roberts, our algorithm is suitable for the multi-dimensional case. Moreover, its implementation is a straightforward combination of the standard discretization techniques and the above mentioned automatic differentiation method.","PeriodicalId":130177,"journal":{"name":"ERN: Other Econometric Modeling: Capital Markets - Asset Pricing (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Exact Simulation of Multi-Dimensional Stochastic Differential Equations\",\"authors\":\"P. Henry-Labordère, Xiaolu Tan, N. Touzi\",\"doi\":\"10.2139/ssrn.2598505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a weak exact simulation technique for a process X defined by a multi-dimensional stochastic differential equation (SDE). Namely, for a Lipschitz function g, we propose a simulation based approximation of the expectation E[g(X_{t_1}, \\\\cdots, X_{t_n})], which by-passes the discretization error. The main idea is to start instead from a well-chosen simulatable SDE whose coefficients are up-dated at independent exponential times. Such a simulatable process can be viewed as a regime-switching SDE, or as a branching diffusion process with one single living particle at all times. In order to compensate for the change of the coefficients of the SDE, our main representation result relies on the automatic differentiation technique induced by Elworthy's formula from Malliavin calculus, as exploited by Fournie et al. for the simulation of the Greeks in financial applications.Unlike the exact simulation algorithm of Beskos and Roberts, our algorithm is suitable for the multi-dimensional case. Moreover, its implementation is a straightforward combination of the standard discretization techniques and the above mentioned automatic differentiation method.\",\"PeriodicalId\":130177,\"journal\":{\"name\":\"ERN: Other Econometric Modeling: Capital Markets - Asset Pricing (Topic)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometric Modeling: Capital Markets - Asset Pricing (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2598505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometric Modeling: Capital Markets - Asset Pricing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2598505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们开发了一种由多维随机微分方程(SDE)定义的过程X的弱精确模拟技术。也就是说,对于Lipschitz函数g,我们提出了基于模拟的期望E[g(X_{t_1}, \cdots, X_{t_n})]的近似,它绕过了离散化误差。主要思想是从一个精心选择的可模拟SDE开始,其系数在独立的指数时间更新。这样一个可模拟的过程可以被看作是一个状态切换的SDE,或者是一个始终只有一个活粒子的分支扩散过程。为了补偿SDE系数的变化,我们的主要表示结果依赖于由Elworthy公式从Malliavin演算导出的自动微分技术,该技术被Fournie等人用于模拟金融应用中的希腊人。与Beskos和Roberts的精确模拟算法不同,我们的算法适用于多维情况。此外,它的实现是标准离散化技术和上述自动微分方法的直接结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact Simulation of Multi-Dimensional Stochastic Differential Equations
We develop a weak exact simulation technique for a process X defined by a multi-dimensional stochastic differential equation (SDE). Namely, for a Lipschitz function g, we propose a simulation based approximation of the expectation E[g(X_{t_1}, \cdots, X_{t_n})], which by-passes the discretization error. The main idea is to start instead from a well-chosen simulatable SDE whose coefficients are up-dated at independent exponential times. Such a simulatable process can be viewed as a regime-switching SDE, or as a branching diffusion process with one single living particle at all times. In order to compensate for the change of the coefficients of the SDE, our main representation result relies on the automatic differentiation technique induced by Elworthy's formula from Malliavin calculus, as exploited by Fournie et al. for the simulation of the Greeks in financial applications.Unlike the exact simulation algorithm of Beskos and Roberts, our algorithm is suitable for the multi-dimensional case. Moreover, its implementation is a straightforward combination of the standard discretization techniques and the above mentioned automatic differentiation method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信