{"title":"基于cnn的多尺度特征表示视频压缩后处理滤波器","authors":"Zhanyuan Qi, Cheolkon Jung, Yang Liu, Ming Li","doi":"10.1109/VCIP56404.2022.10008797","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a convolutional neural network (CNN)-based post-processing filter for video compression with multi-scale feature representation. The discrete wavelet transform (DWT) decomposes an image into multi-frequency and multi-directional sub-bands, and can figure out artifacts caused by video compression with multi-scale feature representation. Thus, we combine DWT with CNN and construct two sub-networks: Step-like sub-band network (SLSB) and mixed enhancement network (ME). SLSB takes the wavelet subbands as input, and feeds them into the Res2Net group (R2NG) from high frequency to low frequency. R2NG consists of Res2Net modules and adopts spatial and channel attentions to adaptively enhance features. We combine the high frequency sub-band output with the low frequency sub-band in R2NG to capture multi-scale features. ME uses mixed convolution composed of dilated convolution and standard convolution as the basic block to expand the receptive field without blind spots in dilated convolution and further improve the reconstruction quality. Experimental results demonstrate that the proposed CNN filter achieves average 2.13%, 2.63%, 2.99%, 4.8%, 3.72% and 4.5% BD-rate reductions over VTM 11.0-NNVC anchor for Y channel on A1, A2, B, C, D and E classes of the common test conditions (CTC) in AI, RA and LDP configurations, respectively.","PeriodicalId":269379,"journal":{"name":"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CNN-Based Post-Processing Filter for Video Compression with Multi-Scale Feature Representation\",\"authors\":\"Zhanyuan Qi, Cheolkon Jung, Yang Liu, Ming Li\",\"doi\":\"10.1109/VCIP56404.2022.10008797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a convolutional neural network (CNN)-based post-processing filter for video compression with multi-scale feature representation. The discrete wavelet transform (DWT) decomposes an image into multi-frequency and multi-directional sub-bands, and can figure out artifacts caused by video compression with multi-scale feature representation. Thus, we combine DWT with CNN and construct two sub-networks: Step-like sub-band network (SLSB) and mixed enhancement network (ME). SLSB takes the wavelet subbands as input, and feeds them into the Res2Net group (R2NG) from high frequency to low frequency. R2NG consists of Res2Net modules and adopts spatial and channel attentions to adaptively enhance features. We combine the high frequency sub-band output with the low frequency sub-band in R2NG to capture multi-scale features. ME uses mixed convolution composed of dilated convolution and standard convolution as the basic block to expand the receptive field without blind spots in dilated convolution and further improve the reconstruction quality. Experimental results demonstrate that the proposed CNN filter achieves average 2.13%, 2.63%, 2.99%, 4.8%, 3.72% and 4.5% BD-rate reductions over VTM 11.0-NNVC anchor for Y channel on A1, A2, B, C, D and E classes of the common test conditions (CTC) in AI, RA and LDP configurations, respectively.\",\"PeriodicalId\":269379,\"journal\":{\"name\":\"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP56404.2022.10008797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP56404.2022.10008797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CNN-Based Post-Processing Filter for Video Compression with Multi-Scale Feature Representation
In this paper, we propose a convolutional neural network (CNN)-based post-processing filter for video compression with multi-scale feature representation. The discrete wavelet transform (DWT) decomposes an image into multi-frequency and multi-directional sub-bands, and can figure out artifacts caused by video compression with multi-scale feature representation. Thus, we combine DWT with CNN and construct two sub-networks: Step-like sub-band network (SLSB) and mixed enhancement network (ME). SLSB takes the wavelet subbands as input, and feeds them into the Res2Net group (R2NG) from high frequency to low frequency. R2NG consists of Res2Net modules and adopts spatial and channel attentions to adaptively enhance features. We combine the high frequency sub-band output with the low frequency sub-band in R2NG to capture multi-scale features. ME uses mixed convolution composed of dilated convolution and standard convolution as the basic block to expand the receptive field without blind spots in dilated convolution and further improve the reconstruction quality. Experimental results demonstrate that the proposed CNN filter achieves average 2.13%, 2.63%, 2.99%, 4.8%, 3.72% and 4.5% BD-rate reductions over VTM 11.0-NNVC anchor for Y channel on A1, A2, B, C, D and E classes of the common test conditions (CTC) in AI, RA and LDP configurations, respectively.