认证异常检测:以虚拟私网为例

M. Chapple, N. Chawla, A. Striegel
{"title":"认证异常检测:以虚拟私网为例","authors":"M. Chapple, N. Chawla, A. Striegel","doi":"10.1145/1269880.1269886","DOIUrl":null,"url":null,"abstract":"The authentication logs on a network can provide a trove of information for discovering potential anomalies in login attempts. Using such logs collected by a production Virtual Private Network device over a period of 15 months, we generate a diurnal model of network accesses. These models are used to detect anomalous authentications, which merit further investigation by a security analyst. We intend that this work will dramatically reduce the amount time spent by analysts identifying anomalous events and allow them to focus on in-depth analysis of these anomalies. Our work makes two contributions: a novel approach of mining authentication data, and the use of geographic distance as a metric to evaluate Virtual Private Network connections. We demonstrate the success of our model using real-world case analysis.","PeriodicalId":216113,"journal":{"name":"Annual ACM Workshop on Mining Network Data","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Authentication anomaly detection: a case study on a virtual private network\",\"authors\":\"M. Chapple, N. Chawla, A. Striegel\",\"doi\":\"10.1145/1269880.1269886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authentication logs on a network can provide a trove of information for discovering potential anomalies in login attempts. Using such logs collected by a production Virtual Private Network device over a period of 15 months, we generate a diurnal model of network accesses. These models are used to detect anomalous authentications, which merit further investigation by a security analyst. We intend that this work will dramatically reduce the amount time spent by analysts identifying anomalous events and allow them to focus on in-depth analysis of these anomalies. Our work makes two contributions: a novel approach of mining authentication data, and the use of geographic distance as a metric to evaluate Virtual Private Network connections. We demonstrate the success of our model using real-world case analysis.\",\"PeriodicalId\":216113,\"journal\":{\"name\":\"Annual ACM Workshop on Mining Network Data\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual ACM Workshop on Mining Network Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1269880.1269886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual ACM Workshop on Mining Network Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1269880.1269886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

网络中的身份验证日志可以为发现网络中可能出现的异常行为提供大量信息。使用生产虚拟专用网设备在15个月期间收集的这些日志,我们生成了一个网络访问的日模型。这些模型用于检测异常身份验证,值得安全分析人员进一步调查。我们打算这项工作将大大减少分析人员识别异常事件所花费的时间,并允许他们专注于对这些异常进行深入分析。我们的工作有两个贡献:挖掘身份验证数据的新方法,以及使用地理距离作为评估虚拟专用网连接的度量。我们使用实际案例分析来证明我们模型的成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Authentication anomaly detection: a case study on a virtual private network
The authentication logs on a network can provide a trove of information for discovering potential anomalies in login attempts. Using such logs collected by a production Virtual Private Network device over a period of 15 months, we generate a diurnal model of network accesses. These models are used to detect anomalous authentications, which merit further investigation by a security analyst. We intend that this work will dramatically reduce the amount time spent by analysts identifying anomalous events and allow them to focus on in-depth analysis of these anomalies. Our work makes two contributions: a novel approach of mining authentication data, and the use of geographic distance as a metric to evaluate Virtual Private Network connections. We demonstrate the success of our model using real-world case analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信