基于多任务和迁移学习的深度高斯过程性能优化

Wissam M. Sid-Lakhdar, M. Aznaveh, P. Luszczek, J. Dongarra
{"title":"基于多任务和迁移学习的深度高斯过程性能优化","authors":"Wissam M. Sid-Lakhdar, M. Aznaveh, P. Luszczek, J. Dongarra","doi":"10.1109/HPEC55821.2022.9926396","DOIUrl":null,"url":null,"abstract":"We combine Deep Gaussian Processes with multitask and transfer learning for the performance modeling and optimization of HPC applications. Deep Gaussian processes merge the uncertainty quantification advantage of Gaussian Processes with the predictive power of deep learning. Multitask and transfer learning allow for improved learning efficiency when several similar tasks are to be learned simultaneously and when previous learned models are sought to help in the learning of new tasks, respectively. A comparison with state-of-the-art autotuners shows the advantage of our approach on two application problems.","PeriodicalId":200071,"journal":{"name":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Gaussian process with multitask and transfer learning for performance optimization\",\"authors\":\"Wissam M. Sid-Lakhdar, M. Aznaveh, P. Luszczek, J. Dongarra\",\"doi\":\"10.1109/HPEC55821.2022.9926396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We combine Deep Gaussian Processes with multitask and transfer learning for the performance modeling and optimization of HPC applications. Deep Gaussian processes merge the uncertainty quantification advantage of Gaussian Processes with the predictive power of deep learning. Multitask and transfer learning allow for improved learning efficiency when several similar tasks are to be learned simultaneously and when previous learned models are sought to help in the learning of new tasks, respectively. A comparison with state-of-the-art autotuners shows the advantage of our approach on two application problems.\",\"PeriodicalId\":200071,\"journal\":{\"name\":\"2022 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC55821.2022.9926396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC55821.2022.9926396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将深度高斯过程与多任务和迁移学习相结合,用于高性能计算应用的性能建模和优化。深度高斯过程将高斯过程的不确定性量化优势与深度学习的预测能力相结合。多任务学习和迁移学习分别在需要同时学习多个相似任务和在学习新任务时寻求先前学习模型的帮助时提高了学习效率。与最先进的自动调谐器的比较显示了我们的方法在两个应用问题上的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Gaussian process with multitask and transfer learning for performance optimization
We combine Deep Gaussian Processes with multitask and transfer learning for the performance modeling and optimization of HPC applications. Deep Gaussian processes merge the uncertainty quantification advantage of Gaussian Processes with the predictive power of deep learning. Multitask and transfer learning allow for improved learning efficiency when several similar tasks are to be learned simultaneously and when previous learned models are sought to help in the learning of new tasks, respectively. A comparison with state-of-the-art autotuners shows the advantage of our approach on two application problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信