独立成分分析的非负矩阵分解

Shangming Yang, Zhang Yi
{"title":"独立成分分析的非负矩阵分解","authors":"Shangming Yang, Zhang Yi","doi":"10.1109/ICCCAS.2007.4348163","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a new algorithm with improved efficiency for nonnegative independent component analysis. This algorithm utilizes Kullback-Leibler divergence to generate nonnegative matrix factorization of the observation vectors. During the factorization, by pre-whitening the observations and orthonormalizing the mixing matrix, the independent components of sources are obtained. In the simulation, we successfully apply the developed algorithm to blind source separation of three images where sources are statistically independent.","PeriodicalId":218351,"journal":{"name":"2007 International Conference on Communications, Circuits and Systems","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nonnegative Matrix Factorization for Independent Component Analysis\",\"authors\":\"Shangming Yang, Zhang Yi\",\"doi\":\"10.1109/ICCCAS.2007.4348163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop a new algorithm with improved efficiency for nonnegative independent component analysis. This algorithm utilizes Kullback-Leibler divergence to generate nonnegative matrix factorization of the observation vectors. During the factorization, by pre-whitening the observations and orthonormalizing the mixing matrix, the independent components of sources are obtained. In the simulation, we successfully apply the developed algorithm to blind source separation of three images where sources are statistically independent.\",\"PeriodicalId\":218351,\"journal\":{\"name\":\"2007 International Conference on Communications, Circuits and Systems\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Communications, Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCAS.2007.4348163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Communications, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCAS.2007.4348163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种提高非负独立分量分析效率的新算法。该算法利用Kullback-Leibler散度对观测向量进行非负矩阵分解。在分解过程中,通过对观测值进行预白化和对混合矩阵进行正交一化,得到源的独立分量。在仿真中,我们成功地将所开发的算法应用于三幅源统计独立的图像的盲源分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonnegative Matrix Factorization for Independent Component Analysis
In this paper, we develop a new algorithm with improved efficiency for nonnegative independent component analysis. This algorithm utilizes Kullback-Leibler divergence to generate nonnegative matrix factorization of the observation vectors. During the factorization, by pre-whitening the observations and orthonormalizing the mixing matrix, the independent components of sources are obtained. In the simulation, we successfully apply the developed algorithm to blind source separation of three images where sources are statistically independent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信