NEC-NET:儿童早期神经颅骨的分割与特征提取网络

Di Fan, N. Gajawelli, A. Paulli, Eryn Perry, J. Tanedo, S. Deoni, Yalin Wang, M. Linguraru, N. Lepore
{"title":"NEC-NET:儿童早期神经颅骨的分割与特征提取网络","authors":"Di Fan, N. Gajawelli, A. Paulli, Eryn Perry, J. Tanedo, S. Deoni, Yalin Wang, M. Linguraru, N. Lepore","doi":"10.1117/12.2670281","DOIUrl":null,"url":null,"abstract":"In early life, the neurocranium undergoes rapid changes to accommodate the expanding brain. Neurocranial maturation can be disrupted by developmental abnormalities and environmental factors such as sleep position. To establish a baseline for the early detection of anomalies, it is important to understand how this structure typically grows in healthy children. Here, we designed a deep neural network pipeline NEC-NET, including segmentation and classification, to analyze the normative development of the neurocranium in T1 MR images from healthy children aged 12 to 60 months old. The pipeline optimizes the segmentation of the neurocranium and shows the preliminary results of age-based regional differences among infants.","PeriodicalId":147201,"journal":{"name":"Symposium on Medical Information Processing and Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NEC-NET: segmentation and feature extraction network for the neurocranium in early childhood\",\"authors\":\"Di Fan, N. Gajawelli, A. Paulli, Eryn Perry, J. Tanedo, S. Deoni, Yalin Wang, M. Linguraru, N. Lepore\",\"doi\":\"10.1117/12.2670281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In early life, the neurocranium undergoes rapid changes to accommodate the expanding brain. Neurocranial maturation can be disrupted by developmental abnormalities and environmental factors such as sleep position. To establish a baseline for the early detection of anomalies, it is important to understand how this structure typically grows in healthy children. Here, we designed a deep neural network pipeline NEC-NET, including segmentation and classification, to analyze the normative development of the neurocranium in T1 MR images from healthy children aged 12 to 60 months old. The pipeline optimizes the segmentation of the neurocranium and shows the preliminary results of age-based regional differences among infants.\",\"PeriodicalId\":147201,\"journal\":{\"name\":\"Symposium on Medical Information Processing and Analysis\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Medical Information Processing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2670281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Medical Information Processing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2670281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在生命早期,神经头盖骨经历了快速的变化,以适应不断扩大的大脑。神经颅成熟可因发育异常和环境因素(如睡眠姿势)而中断。为了建立早期发现异常的基线,重要的是要了解这种结构在健康儿童中通常是如何生长的。在此,我们设计了一个深度神经网络管道NEC-NET,包括分割和分类,分析12 - 60月龄健康儿童T1 MR图像中神经头盖骨的规范发育。该管道优化了神经颅骨的分割,并显示了婴儿基于年龄的区域差异的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NEC-NET: segmentation and feature extraction network for the neurocranium in early childhood
In early life, the neurocranium undergoes rapid changes to accommodate the expanding brain. Neurocranial maturation can be disrupted by developmental abnormalities and environmental factors such as sleep position. To establish a baseline for the early detection of anomalies, it is important to understand how this structure typically grows in healthy children. Here, we designed a deep neural network pipeline NEC-NET, including segmentation and classification, to analyze the normative development of the neurocranium in T1 MR images from healthy children aged 12 to 60 months old. The pipeline optimizes the segmentation of the neurocranium and shows the preliminary results of age-based regional differences among infants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信