{"title":"外科理论与封闭单连通4流形的分类","authors":"P. Orson, Mark Powell, Arunima Ray","doi":"10.1093/oso/9780198841319.003.0022","DOIUrl":null,"url":null,"abstract":"Surgery theory and the classification of simply connected 4-manifolds comprise two key consequences of the disc embedding theorem. The chapter begins with an introduction to surgery theory from the perspective of 4-manifolds. In particular, the terms and maps in the surgery sequence are defined, and an explanation is given as to how the sphere embedding theorem, with the added ingredient of topological transversality, can be used to define the maps in the surgery sequence and show that it is exact. The surgery sequence is applied to classify simply connected closed 4-manifolds up to homeomorphism. The chapter closes with a survey of related classification results.","PeriodicalId":272723,"journal":{"name":"The Disc Embedding Theorem","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Surgery Theory and the Classification of Closed, Simply Connected 4-manifolds\",\"authors\":\"P. Orson, Mark Powell, Arunima Ray\",\"doi\":\"10.1093/oso/9780198841319.003.0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surgery theory and the classification of simply connected 4-manifolds comprise two key consequences of the disc embedding theorem. The chapter begins with an introduction to surgery theory from the perspective of 4-manifolds. In particular, the terms and maps in the surgery sequence are defined, and an explanation is given as to how the sphere embedding theorem, with the added ingredient of topological transversality, can be used to define the maps in the surgery sequence and show that it is exact. The surgery sequence is applied to classify simply connected closed 4-manifolds up to homeomorphism. The chapter closes with a survey of related classification results.\",\"PeriodicalId\":272723,\"journal\":{\"name\":\"The Disc Embedding Theorem\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Disc Embedding Theorem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198841319.003.0022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Disc Embedding Theorem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198841319.003.0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Surgery Theory and the Classification of Closed, Simply Connected 4-manifolds
Surgery theory and the classification of simply connected 4-manifolds comprise two key consequences of the disc embedding theorem. The chapter begins with an introduction to surgery theory from the perspective of 4-manifolds. In particular, the terms and maps in the surgery sequence are defined, and an explanation is given as to how the sphere embedding theorem, with the added ingredient of topological transversality, can be used to define the maps in the surgery sequence and show that it is exact. The surgery sequence is applied to classify simply connected closed 4-manifolds up to homeomorphism. The chapter closes with a survey of related classification results.