新型皮革图像物种自动识别的深度学习模型研究

Anjli Varghese, M. Jawahar, A. Prince
{"title":"新型皮革图像物种自动识别的深度学习模型研究","authors":"Anjli Varghese, M. Jawahar, A. Prince","doi":"10.1109/IAICT59002.2023.10205553","DOIUrl":null,"url":null,"abstract":"This paper introduces a new set of large-scale leather image data. Unlike the existing dataset, it comprises 7600 images with varied non-ideal behavior. The aim is to develop a versatile identification model that can efficiently determine the species from complex/practically challenging leather images. Hence, this research proposed to train a convolutional neural network (CNN) on a large-scale dataset. It performs a comparative study on five CNNs: ResNet50, MobileNet, DenseNet201, InceptionNetV3, and InceptionResNetV2. The analysis reveals that InceptionNetV3 outperforms with 98.23% accuracy and 1.71% negligible error. It also evaluates the generalization power of the trained InceptionNetV3 on the existing small-scale dataset (1200 images). Although the model is trained on non-ideal leather images, it results in 94.07% accuracy. However, learning from present and existing datasets improves the prediction rate to 98.5% accuracy. Thus, this work efficiently models a deeper CNN to predict species from leather images with ideal and non-ideal behavior. Contrary to the previous machine learning-based species prediction methods, the present deep learning method designs a fully-automated model with accurate and robust results.","PeriodicalId":339796,"journal":{"name":"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on Deep Learning Models for Automatic Species Identification from Novel Leather Images\",\"authors\":\"Anjli Varghese, M. Jawahar, A. Prince\",\"doi\":\"10.1109/IAICT59002.2023.10205553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new set of large-scale leather image data. Unlike the existing dataset, it comprises 7600 images with varied non-ideal behavior. The aim is to develop a versatile identification model that can efficiently determine the species from complex/practically challenging leather images. Hence, this research proposed to train a convolutional neural network (CNN) on a large-scale dataset. It performs a comparative study on five CNNs: ResNet50, MobileNet, DenseNet201, InceptionNetV3, and InceptionResNetV2. The analysis reveals that InceptionNetV3 outperforms with 98.23% accuracy and 1.71% negligible error. It also evaluates the generalization power of the trained InceptionNetV3 on the existing small-scale dataset (1200 images). Although the model is trained on non-ideal leather images, it results in 94.07% accuracy. However, learning from present and existing datasets improves the prediction rate to 98.5% accuracy. Thus, this work efficiently models a deeper CNN to predict species from leather images with ideal and non-ideal behavior. Contrary to the previous machine learning-based species prediction methods, the present deep learning method designs a fully-automated model with accurate and robust results.\",\"PeriodicalId\":339796,\"journal\":{\"name\":\"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAICT59002.2023.10205553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT59002.2023.10205553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一套新的大规模皮革图像数据。与现有数据集不同,它包含7600张具有各种非理想行为的图像。目的是开发一个多功能的识别模型,可以有效地确定从复杂/实际具有挑战性的皮革图像的物种。因此,本研究提出在大规模数据集上训练卷积神经网络(CNN)。对ResNet50、MobileNet、DenseNet201、InceptionNetV3、InceptionResNetV2这5种cnn进行了对比研究。分析表明,InceptionNetV3具有98.23%的准确率和1.71%的可忽略误差。它还评估了训练后的InceptionNetV3在现有的小规模数据集(1200张图像)上的泛化能力。虽然该模型是在非理想皮革图像上训练的,但准确率为94.07%。然而,从现有和现有的数据集学习,预测率提高到98.5%的准确率。因此,这项工作有效地建立了一个更深层的CNN模型,以从具有理想和非理想行为的皮革图像中预测物种。与以往基于机器学习的物种预测方法不同,本文的深度学习方法设计了一个具有准确和鲁棒性的全自动模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on Deep Learning Models for Automatic Species Identification from Novel Leather Images
This paper introduces a new set of large-scale leather image data. Unlike the existing dataset, it comprises 7600 images with varied non-ideal behavior. The aim is to develop a versatile identification model that can efficiently determine the species from complex/practically challenging leather images. Hence, this research proposed to train a convolutional neural network (CNN) on a large-scale dataset. It performs a comparative study on five CNNs: ResNet50, MobileNet, DenseNet201, InceptionNetV3, and InceptionResNetV2. The analysis reveals that InceptionNetV3 outperforms with 98.23% accuracy and 1.71% negligible error. It also evaluates the generalization power of the trained InceptionNetV3 on the existing small-scale dataset (1200 images). Although the model is trained on non-ideal leather images, it results in 94.07% accuracy. However, learning from present and existing datasets improves the prediction rate to 98.5% accuracy. Thus, this work efficiently models a deeper CNN to predict species from leather images with ideal and non-ideal behavior. Contrary to the previous machine learning-based species prediction methods, the present deep learning method designs a fully-automated model with accurate and robust results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信