HSV空间中颜色量化退化图像的无参考图像质量评估

K. De, V. Masilamani
{"title":"HSV空间中颜色量化退化图像的无参考图像质量评估","authors":"K. De, V. Masilamani","doi":"10.1109/TECHSYM.2016.7872652","DOIUrl":null,"url":null,"abstract":"Image quality assessment is a very important and challenging task for many image processing applications. The task of quality assessment of an image can be done either with the help of a reference image of the same scene or blindly without any reference image. No-reference image quality assessment algorithms specific to a particular type of distortion are very popular for different image processing applications. Color quantization is a technique to reduce the number of unique colors in the image, but excessive color quantization can reduce the visual quality of images. In this paper, we propose a no-reference image quality measure specific to quality assessment color quantized images and color quantized images with dither. The results are validated using a subset of the standard TID2013 image quality dataset for validating it in accordance with the human visual system.","PeriodicalId":403350,"journal":{"name":"2016 IEEE Students’ Technology Symposium (TechSym)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"No-reference image quality assessment for images degraded by color quantization in HSV space\",\"authors\":\"K. De, V. Masilamani\",\"doi\":\"10.1109/TECHSYM.2016.7872652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image quality assessment is a very important and challenging task for many image processing applications. The task of quality assessment of an image can be done either with the help of a reference image of the same scene or blindly without any reference image. No-reference image quality assessment algorithms specific to a particular type of distortion are very popular for different image processing applications. Color quantization is a technique to reduce the number of unique colors in the image, but excessive color quantization can reduce the visual quality of images. In this paper, we propose a no-reference image quality measure specific to quality assessment color quantized images and color quantized images with dither. The results are validated using a subset of the standard TID2013 image quality dataset for validating it in accordance with the human visual system.\",\"PeriodicalId\":403350,\"journal\":{\"name\":\"2016 IEEE Students’ Technology Symposium (TechSym)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Students’ Technology Symposium (TechSym)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TECHSYM.2016.7872652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Students’ Technology Symposium (TechSym)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TECHSYM.2016.7872652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在许多图像处理应用中,图像质量评估是一项非常重要且具有挑战性的任务。图像质量评估既可以借助同一场景的参考图像来完成,也可以在没有任何参考图像的情况下盲目完成。针对特定类型失真的无参考图像质量评估算法在不同的图像处理应用中非常流行。颜色量化是一种减少图像中唯一颜色数量的技术,但过多的颜色量化会降低图像的视觉质量。本文针对彩色量化图像和带有抖动的彩色量化图像的质量评价,提出了一种无参考图像质量度量方法。使用标准TID2013图像质量数据集的一个子集对结果进行验证,以根据人类视觉系统进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
No-reference image quality assessment for images degraded by color quantization in HSV space
Image quality assessment is a very important and challenging task for many image processing applications. The task of quality assessment of an image can be done either with the help of a reference image of the same scene or blindly without any reference image. No-reference image quality assessment algorithms specific to a particular type of distortion are very popular for different image processing applications. Color quantization is a technique to reduce the number of unique colors in the image, but excessive color quantization can reduce the visual quality of images. In this paper, we propose a no-reference image quality measure specific to quality assessment color quantized images and color quantized images with dither. The results are validated using a subset of the standard TID2013 image quality dataset for validating it in accordance with the human visual system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信