{"title":"对事故报告进行文本挖掘,以找到有关工业安全的知识","authors":"T. Nakata","doi":"10.1109/RAM.2017.7889795","DOIUrl":null,"url":null,"abstract":"To prevent accidents, it is very important to learn why and how past accidents occurred and escalated. The information of accidents is mostly recorded in natural language texts, which is not convenient to analyze the flow of events in the accidents. This paper proposes a method to recognize typical flow of events in a large set of text reports. By focusing two adjacent sentences, our system succeeded to detect typical pairs of predecessor word and successor word. Then we can recognize the typical flows of accidents.","PeriodicalId":138871,"journal":{"name":"2017 Annual Reliability and Maintainability Symposium (RAMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Text-mining on incident reports to find knowledge on industrial safety\",\"authors\":\"T. Nakata\",\"doi\":\"10.1109/RAM.2017.7889795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To prevent accidents, it is very important to learn why and how past accidents occurred and escalated. The information of accidents is mostly recorded in natural language texts, which is not convenient to analyze the flow of events in the accidents. This paper proposes a method to recognize typical flow of events in a large set of text reports. By focusing two adjacent sentences, our system succeeded to detect typical pairs of predecessor word and successor word. Then we can recognize the typical flows of accidents.\",\"PeriodicalId\":138871,\"journal\":{\"name\":\"2017 Annual Reliability and Maintainability Symposium (RAMS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Annual Reliability and Maintainability Symposium (RAMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAM.2017.7889795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Annual Reliability and Maintainability Symposium (RAMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAM.2017.7889795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Text-mining on incident reports to find knowledge on industrial safety
To prevent accidents, it is very important to learn why and how past accidents occurred and escalated. The information of accidents is mostly recorded in natural language texts, which is not convenient to analyze the flow of events in the accidents. This paper proposes a method to recognize typical flow of events in a large set of text reports. By focusing two adjacent sentences, our system succeeded to detect typical pairs of predecessor word and successor word. Then we can recognize the typical flows of accidents.