机器学习、深度学习和XGBoost自动学习工具的比较

Luís Ferreira, A. Pilastri, C. Martins, Pedro Miguel Pires, Paulo Cortez
{"title":"机器学习、深度学习和XGBoost自动学习工具的比较","authors":"Luís Ferreira, A. Pilastri, C. Martins, Pedro Miguel Pires, Paulo Cortez","doi":"10.1109/IJCNN52387.2021.9534091","DOIUrl":null,"url":null,"abstract":"This paper presents a benchmark of supervised Automated Machine Learning (AutoML) tools. Firstly, we analyze the characteristics of eight recent open-source AutoML tools (Auto-Keras, Auto-PyTorch, Auto-Sklearn, AutoGluon, H2O AutoML, rminer, TPOT and TransmogrifAI) and describe twelve popular OpenML datasets that were used in the benchmark (divided into regression, binary and multi-class classification tasks). Then, we perform a comparison study with hundreds of computational experiments based on three scenarios: General Machine Learning (GML), Deep Learning (DL) and XGBoost (XGB). To select the best tool, we used a lexicographic approach, considering first the average prediction score for each task and then the computational effort. The best predictive results were achieved for GML, which were further compared with the best OpenML public results. Overall, the best GML AutoML tools obtained competitive results, outperforming the best OpenML models in five datasets. These results confirm the potential of the general-purpose AutoML tools to fully automate the Machine Learning (ML) algorithm selection and tuning.","PeriodicalId":396583,"journal":{"name":"2021 International Joint Conference on Neural Networks (IJCNN)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"A Comparison of AutoML Tools for Machine Learning, Deep Learning and XGBoost\",\"authors\":\"Luís Ferreira, A. Pilastri, C. Martins, Pedro Miguel Pires, Paulo Cortez\",\"doi\":\"10.1109/IJCNN52387.2021.9534091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a benchmark of supervised Automated Machine Learning (AutoML) tools. Firstly, we analyze the characteristics of eight recent open-source AutoML tools (Auto-Keras, Auto-PyTorch, Auto-Sklearn, AutoGluon, H2O AutoML, rminer, TPOT and TransmogrifAI) and describe twelve popular OpenML datasets that were used in the benchmark (divided into regression, binary and multi-class classification tasks). Then, we perform a comparison study with hundreds of computational experiments based on three scenarios: General Machine Learning (GML), Deep Learning (DL) and XGBoost (XGB). To select the best tool, we used a lexicographic approach, considering first the average prediction score for each task and then the computational effort. The best predictive results were achieved for GML, which were further compared with the best OpenML public results. Overall, the best GML AutoML tools obtained competitive results, outperforming the best OpenML models in five datasets. These results confirm the potential of the general-purpose AutoML tools to fully automate the Machine Learning (ML) algorithm selection and tuning.\",\"PeriodicalId\":396583,\"journal\":{\"name\":\"2021 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN52387.2021.9534091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN52387.2021.9534091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

本文提出了一个监督式自动机器学习(AutoML)工具的基准。首先,我们分析了8个最新的开源AutoML工具(Auto-Keras、Auto-PyTorch、Auto-Sklearn、AutoGluon、H2O AutoML、rminer、TPOT和TransmogrifAI)的特征,并描述了基准测试中使用的12个流行的OpenML数据集(分为回归、二元和多类分类任务)。然后,我们基于通用机器学习(GML)、深度学习(DL)和XGBoost (XGB)三种场景,与数百个计算实验进行了比较研究。为了选择最好的工具,我们使用字典法,首先考虑每个任务的平均预测分数,然后考虑计算工作量。GML获得了最好的预测结果,并进一步与最好的OpenML公开结果进行了比较。总的来说,最好的GML AutoML工具获得了有竞争力的结果,在五个数据集中优于最好的OpenML模型。这些结果证实了通用AutoML工具完全自动化机器学习(ML)算法选择和调优的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparison of AutoML Tools for Machine Learning, Deep Learning and XGBoost
This paper presents a benchmark of supervised Automated Machine Learning (AutoML) tools. Firstly, we analyze the characteristics of eight recent open-source AutoML tools (Auto-Keras, Auto-PyTorch, Auto-Sklearn, AutoGluon, H2O AutoML, rminer, TPOT and TransmogrifAI) and describe twelve popular OpenML datasets that were used in the benchmark (divided into regression, binary and multi-class classification tasks). Then, we perform a comparison study with hundreds of computational experiments based on three scenarios: General Machine Learning (GML), Deep Learning (DL) and XGBoost (XGB). To select the best tool, we used a lexicographic approach, considering first the average prediction score for each task and then the computational effort. The best predictive results were achieved for GML, which were further compared with the best OpenML public results. Overall, the best GML AutoML tools obtained competitive results, outperforming the best OpenML models in five datasets. These results confirm the potential of the general-purpose AutoML tools to fully automate the Machine Learning (ML) algorithm selection and tuning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信