基于wls约束的自适应陷波滤波器的频率估计

R. Punchalard
{"title":"基于wls约束的自适应陷波滤波器的频率估计","authors":"R. Punchalard","doi":"10.1109/ecti-con49241.2020.9158280","DOIUrl":null,"url":null,"abstract":"A constrained adaptive IIR notch filter (c-ANF) using weighted least square (WLS) algorithm (c-ANF-WLS) is introduced for frequency estimation of a single real tone embed in Gaussian noise. As compared with some previous techniques, the proposed algorithm exhibits better performance in terms of both convergence rate and steady state mean square error (MSE). Computer simulation results are provided to assert the claim.","PeriodicalId":371552,"journal":{"name":"2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Frequency Estimation Based On WLS-Constrained Adaptive Notch Filter\",\"authors\":\"R. Punchalard\",\"doi\":\"10.1109/ecti-con49241.2020.9158280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A constrained adaptive IIR notch filter (c-ANF) using weighted least square (WLS) algorithm (c-ANF-WLS) is introduced for frequency estimation of a single real tone embed in Gaussian noise. As compared with some previous techniques, the proposed algorithm exhibits better performance in terms of both convergence rate and steady state mean square error (MSE). Computer simulation results are provided to assert the claim.\",\"PeriodicalId\":371552,\"journal\":{\"name\":\"2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ecti-con49241.2020.9158280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ecti-con49241.2020.9158280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于加权最小二乘(WLS)算法的约束自适应IIR陷波滤波器(c-ANF-WLS),用于高斯噪声中单个实音的频率估计。与以往的一些技术相比,该算法在收敛速度和稳态均方误差(MSE)方面都表现出更好的性能。提供了计算机模拟结果来断言所述权利要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency Estimation Based On WLS-Constrained Adaptive Notch Filter
A constrained adaptive IIR notch filter (c-ANF) using weighted least square (WLS) algorithm (c-ANF-WLS) is introduced for frequency estimation of a single real tone embed in Gaussian noise. As compared with some previous techniques, the proposed algorithm exhibits better performance in terms of both convergence rate and steady state mean square error (MSE). Computer simulation results are provided to assert the claim.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信