{"title":"阿拉伯语社交媒体内容的情感分析:比较研究","authors":"R. Khasawneh, H. Wahsheh, M. Al-Kabi, I. Alsmadi","doi":"10.1109/ICITST.2013.6750171","DOIUrl":null,"url":null,"abstract":"The Internet became an indispensable part of people's lives because of the significant role it plays in the ways individuals interact, communicate and collaborate with each other. Over recent years, social media sites succeed in attracting a large portion of online users where they become not only content readers but also content generators and publishers. Social media users generate daily a huge volume of comments and reviews related to different aspects of life including: political, scientific and social subjects. In general, sentiment analysis refers to the task of identifying positive and negative opinions, emotions and evaluations related to an article, news, products, services, etc. Arabic sentiment analysis is conducted in this study using a small dataset consisting of 1,000 Arabic reviews and comments collected from Facebook and Twitter social network websites. The collected dataset is used in order to conduct a comparison between two free online sentiment analysis tools: SocialMention and SentiStrength that support Arabic language. The results which based on based on the two of classifiers (Decision tree (J48) and SVM) showed that the SentiStrength is better than SocialMention tool.","PeriodicalId":246884,"journal":{"name":"8th International Conference for Internet Technology and Secured Transactions (ICITST-2013)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Sentiment analysis of arabic social media content: a comparative study\",\"authors\":\"R. Khasawneh, H. Wahsheh, M. Al-Kabi, I. Alsmadi\",\"doi\":\"10.1109/ICITST.2013.6750171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet became an indispensable part of people's lives because of the significant role it plays in the ways individuals interact, communicate and collaborate with each other. Over recent years, social media sites succeed in attracting a large portion of online users where they become not only content readers but also content generators and publishers. Social media users generate daily a huge volume of comments and reviews related to different aspects of life including: political, scientific and social subjects. In general, sentiment analysis refers to the task of identifying positive and negative opinions, emotions and evaluations related to an article, news, products, services, etc. Arabic sentiment analysis is conducted in this study using a small dataset consisting of 1,000 Arabic reviews and comments collected from Facebook and Twitter social network websites. The collected dataset is used in order to conduct a comparison between two free online sentiment analysis tools: SocialMention and SentiStrength that support Arabic language. The results which based on based on the two of classifiers (Decision tree (J48) and SVM) showed that the SentiStrength is better than SocialMention tool.\",\"PeriodicalId\":246884,\"journal\":{\"name\":\"8th International Conference for Internet Technology and Secured Transactions (ICITST-2013)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"8th International Conference for Internet Technology and Secured Transactions (ICITST-2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITST.2013.6750171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"8th International Conference for Internet Technology and Secured Transactions (ICITST-2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITST.2013.6750171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sentiment analysis of arabic social media content: a comparative study
The Internet became an indispensable part of people's lives because of the significant role it plays in the ways individuals interact, communicate and collaborate with each other. Over recent years, social media sites succeed in attracting a large portion of online users where they become not only content readers but also content generators and publishers. Social media users generate daily a huge volume of comments and reviews related to different aspects of life including: political, scientific and social subjects. In general, sentiment analysis refers to the task of identifying positive and negative opinions, emotions and evaluations related to an article, news, products, services, etc. Arabic sentiment analysis is conducted in this study using a small dataset consisting of 1,000 Arabic reviews and comments collected from Facebook and Twitter social network websites. The collected dataset is used in order to conduct a comparison between two free online sentiment analysis tools: SocialMention and SentiStrength that support Arabic language. The results which based on based on the two of classifiers (Decision tree (J48) and SVM) showed that the SentiStrength is better than SocialMention tool.