{"title":"基于磁性材料的可重构吸收选频反射结构","authors":"Shunliu Jiang, X. Kong, Lingqi Kong, Xuemeng Wang, Weihao Lin, Bo-rui Bian","doi":"10.1109/ICEICT51264.2020.9334185","DOIUrl":null,"url":null,"abstract":"When it comes to the realization of RCS reduction, absorptive frequency-selective reflection structure (AFSR) integrated with antenna is effective at building a low-RCS antenna system. In this article, a reconfigurable AFSR using magnetic material is proposed and investigated, which is comprised of a reconfigurable frequency selective surface (FSS) and a frequency-dependent magnetic material (FDMM). The total 11.2 mm thick reconfigurable AFSR realizes switches between broadband absorption from 5 to 8 GHz with −10 dB reflectivity and in-band reflection & out-of-band absorption modes by controlling the ON and OFF states of pin diodes. The proposed structure is simulated and analyzed, where reasonable agreements between these results are observed.","PeriodicalId":124337,"journal":{"name":"2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconfigurable Absorptive Frequency-Selective Reflection Structure Based on Magnetic Material\",\"authors\":\"Shunliu Jiang, X. Kong, Lingqi Kong, Xuemeng Wang, Weihao Lin, Bo-rui Bian\",\"doi\":\"10.1109/ICEICT51264.2020.9334185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When it comes to the realization of RCS reduction, absorptive frequency-selective reflection structure (AFSR) integrated with antenna is effective at building a low-RCS antenna system. In this article, a reconfigurable AFSR using magnetic material is proposed and investigated, which is comprised of a reconfigurable frequency selective surface (FSS) and a frequency-dependent magnetic material (FDMM). The total 11.2 mm thick reconfigurable AFSR realizes switches between broadband absorption from 5 to 8 GHz with −10 dB reflectivity and in-band reflection & out-of-band absorption modes by controlling the ON and OFF states of pin diodes. The proposed structure is simulated and analyzed, where reasonable agreements between these results are observed.\",\"PeriodicalId\":124337,\"journal\":{\"name\":\"2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEICT51264.2020.9334185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEICT51264.2020.9334185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reconfigurable Absorptive Frequency-Selective Reflection Structure Based on Magnetic Material
When it comes to the realization of RCS reduction, absorptive frequency-selective reflection structure (AFSR) integrated with antenna is effective at building a low-RCS antenna system. In this article, a reconfigurable AFSR using magnetic material is proposed and investigated, which is comprised of a reconfigurable frequency selective surface (FSS) and a frequency-dependent magnetic material (FDMM). The total 11.2 mm thick reconfigurable AFSR realizes switches between broadband absorption from 5 to 8 GHz with −10 dB reflectivity and in-band reflection & out-of-band absorption modes by controlling the ON and OFF states of pin diodes. The proposed structure is simulated and analyzed, where reasonable agreements between these results are observed.