从受限运动中学习基于势的策略

M. Howard, Stefan Klanke, M. Gienger, C. Goerick, S. Vijayakumar
{"title":"从受限运动中学习基于势的策略","authors":"M. Howard, Stefan Klanke, M. Gienger, C. Goerick, S. Vijayakumar","doi":"10.1109/ICHR.2008.4755977","DOIUrl":null,"url":null,"abstract":"We present a method for learning potential-based policies from constrained motion data. In contrast to previous approaches to direct policy learning, our method can combine observations from a variety of contexts where different constraints are in force, to learn the underlying unconstrained policy in form of its potential function. This allows us to generalise and predict behaviour where novel constraints apply. As a key ingredient, we first create multiple simple local models of the potential, and align those using an efficient algorithm. We can then detect and discard unsuitable subsets of the data and learn a global model from a cleanly pre-processed training set. We demonstrate our approach on systems of varying complexity, including kinematic data from the ASIMO humanoid robot with 22 degrees of freedom.","PeriodicalId":402020,"journal":{"name":"Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Learning potential-based policies from constrained motion\",\"authors\":\"M. Howard, Stefan Klanke, M. Gienger, C. Goerick, S. Vijayakumar\",\"doi\":\"10.1109/ICHR.2008.4755977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method for learning potential-based policies from constrained motion data. In contrast to previous approaches to direct policy learning, our method can combine observations from a variety of contexts where different constraints are in force, to learn the underlying unconstrained policy in form of its potential function. This allows us to generalise and predict behaviour where novel constraints apply. As a key ingredient, we first create multiple simple local models of the potential, and align those using an efficient algorithm. We can then detect and discard unsuitable subsets of the data and learn a global model from a cleanly pre-processed training set. We demonstrate our approach on systems of varying complexity, including kinematic data from the ASIMO humanoid robot with 22 degrees of freedom.\",\"PeriodicalId\":402020,\"journal\":{\"name\":\"Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHR.2008.4755977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHR.2008.4755977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们提出了一种从受限运动数据中学习基于势的策略的方法。与之前的直接策略学习方法相比,我们的方法可以结合来自不同约束生效的各种上下文的观察,以潜在函数的形式学习潜在的无约束策略。这使我们能够概括和预测新约束适用的行为。作为一个关键因素,我们首先创建了多个简单的潜在局部模型,并使用有效的算法对这些模型进行对齐。然后,我们可以检测和丢弃不合适的数据子集,并从一个干净的预处理训练集中学习一个全局模型。我们在不同复杂性的系统上展示了我们的方法,包括来自22自由度的ASIMO人形机器人的运动学数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning potential-based policies from constrained motion
We present a method for learning potential-based policies from constrained motion data. In contrast to previous approaches to direct policy learning, our method can combine observations from a variety of contexts where different constraints are in force, to learn the underlying unconstrained policy in form of its potential function. This allows us to generalise and predict behaviour where novel constraints apply. As a key ingredient, we first create multiple simple local models of the potential, and align those using an efficient algorithm. We can then detect and discard unsuitable subsets of the data and learn a global model from a cleanly pre-processed training set. We demonstrate our approach on systems of varying complexity, including kinematic data from the ASIMO humanoid robot with 22 degrees of freedom.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信