𝔸1-connected规则曲面的组件

Chetan T. Balwe, Anand Sawant
{"title":"𝔸1-connected规则曲面的组件","authors":"Chetan T. Balwe, Anand Sawant","doi":"10.2140/gt.2022.26.321","DOIUrl":null,"url":null,"abstract":"A conjecture of Morel asserts that the sheaf of $\\mathbb A^1$-connected components of a space is $\\mathbb A^1$-invariant. Using purely algebro-geometric methods, we determine the sheaf of $\\mathbb A^1$-connected components of a smooth projective surface, which is birationally ruled over a curve of genus $>0$. As a consequence, we show that Morel's conjecture holds for all smooth projective surfaces over an algebraically closed field of characteristic $0$.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"𝔸1–connected components of ruled\\nsurfaces\",\"authors\":\"Chetan T. Balwe, Anand Sawant\",\"doi\":\"10.2140/gt.2022.26.321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A conjecture of Morel asserts that the sheaf of $\\\\mathbb A^1$-connected components of a space is $\\\\mathbb A^1$-invariant. Using purely algebro-geometric methods, we determine the sheaf of $\\\\mathbb A^1$-connected components of a smooth projective surface, which is birationally ruled over a curve of genus $>0$. As a consequence, we show that Morel's conjecture holds for all smooth projective surfaces over an algebraically closed field of characteristic $0$.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2022.26.321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

Morel的一个猜想断言空间的$\mathbb A^1$连通分量集是$\mathbb A^1$不变的。利用纯代数几何方法,我们确定了光滑射影曲面的$\mathbb A^1$连通分量集,该曲面是在$> $的曲线上进行双定域的。因此,我们证明了Morel猜想对特征为$0$的代数闭场上的所有光滑射影曲面都成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
𝔸1–connected components of ruled surfaces
A conjecture of Morel asserts that the sheaf of $\mathbb A^1$-connected components of a space is $\mathbb A^1$-invariant. Using purely algebro-geometric methods, we determine the sheaf of $\mathbb A^1$-connected components of a smooth projective surface, which is birationally ruled over a curve of genus $>0$. As a consequence, we show that Morel's conjecture holds for all smooth projective surfaces over an algebraically closed field of characteristic $0$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信