基于改进CAMP-MMV算法的大规模MIMO下行信道估计

Yue Xiu, Wenyuan Wang, Jiao Wu, Yongliang Shen
{"title":"基于改进CAMP-MMV算法的大规模MIMO下行信道估计","authors":"Yue Xiu, Wenyuan Wang, Jiao Wu, Yongliang Shen","doi":"10.1109/ICAIT.2017.8388899","DOIUrl":null,"url":null,"abstract":"Downlink channel estimation in massive multiple-input multiple-output (MIMO) systems is challenging due to the large training and feedback overhead. So, it is necessary to reduce the pilot overhead. we propose a new compressive sensing (CS)CSI estimation scheme for frequency division duplexing (FDD)massive MIMO systems, which combines the algorithm of supports identify and the complex approximate message passing-multiple measurement vector (CAMP-MMV) algorithm. The approach by using information of supports position to improve the performance of CAMP-MMV. The analytic performance guarantees of the proposed scheme are the length of non orthogonal pilot and signal noise ratio (SNR). The numerical results show that performance of CSI estimation and achieve higher estimation accuracy as compared to an existing sparse Bayesian algorithm.","PeriodicalId":376884,"journal":{"name":"2017 9th International Conference on Advanced Infocomm Technology (ICAIT)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Massive MIMO downlink channel estimation based on improved CAMP-MMV algorithm\",\"authors\":\"Yue Xiu, Wenyuan Wang, Jiao Wu, Yongliang Shen\",\"doi\":\"10.1109/ICAIT.2017.8388899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Downlink channel estimation in massive multiple-input multiple-output (MIMO) systems is challenging due to the large training and feedback overhead. So, it is necessary to reduce the pilot overhead. we propose a new compressive sensing (CS)CSI estimation scheme for frequency division duplexing (FDD)massive MIMO systems, which combines the algorithm of supports identify and the complex approximate message passing-multiple measurement vector (CAMP-MMV) algorithm. The approach by using information of supports position to improve the performance of CAMP-MMV. The analytic performance guarantees of the proposed scheme are the length of non orthogonal pilot and signal noise ratio (SNR). The numerical results show that performance of CSI estimation and achieve higher estimation accuracy as compared to an existing sparse Bayesian algorithm.\",\"PeriodicalId\":376884,\"journal\":{\"name\":\"2017 9th International Conference on Advanced Infocomm Technology (ICAIT)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 9th International Conference on Advanced Infocomm Technology (ICAIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIT.2017.8388899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 9th International Conference on Advanced Infocomm Technology (ICAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIT.2017.8388899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在大规模多输入多输出(MIMO)系统中,由于训练和反馈开销较大,下行信道估计具有挑战性。因此,有必要减少飞行员的开销。针对频分双工(FDD)大规模MIMO系统,提出了一种新的压缩感知(CS)CSI估计方案,该方案将支持度识别算法与复杂近似消息传递-多重测量向量(CAMP-MMV)算法相结合。利用支架位置信息提高CAMP-MMV性能的方法。非正交导频长度和信噪比是该方案分析性能的保证。数值结果表明,与现有的稀疏贝叶斯算法相比,CSI估计的性能和估计精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Massive MIMO downlink channel estimation based on improved CAMP-MMV algorithm
Downlink channel estimation in massive multiple-input multiple-output (MIMO) systems is challenging due to the large training and feedback overhead. So, it is necessary to reduce the pilot overhead. we propose a new compressive sensing (CS)CSI estimation scheme for frequency division duplexing (FDD)massive MIMO systems, which combines the algorithm of supports identify and the complex approximate message passing-multiple measurement vector (CAMP-MMV) algorithm. The approach by using information of supports position to improve the performance of CAMP-MMV. The analytic performance guarantees of the proposed scheme are the length of non orthogonal pilot and signal noise ratio (SNR). The numerical results show that performance of CSI estimation and achieve higher estimation accuracy as compared to an existing sparse Bayesian algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信