系统信息分析与情绪分析分析使用天真的Bayes和平滑的拉普拉斯

Nilam Ramadhani, Novan Fajarianto
{"title":"系统信息分析与情绪分析分析使用天真的Bayes和平滑的拉普拉斯","authors":"Nilam Ramadhani, Novan Fajarianto","doi":"10.21456/VOL10ISS2PP228-234","DOIUrl":null,"url":null,"abstract":"A good lecture is certainly a goal so that students achieve maximum learning outcomes. In order for good lecture quality, lecture evaluation needs to be done,beside lecturer professional competency training. In order to improve the quality of lectures, Departement Informatics of Madura University (UNIRA) evaluates lecturers' performance in each semester. Form of evaluation is a questionnaire that filled out by students.Results of the questionnaire, then it is analyzed to find out whether the comments are positive, negative, or neutral. The method that can be used to solve the problem of sentiment classification analysis is Naïve Bayes that combined with text processing techniques.The data comments that collected are 342. After grouping the comments by subject, there were 31 comments for subject Human and Computer Interaction (HCI). In this data comments then performed data cleaning, data transformation, text processing and labeling. Then classifying comments using Naïve Bayes with Smoothing Laplace. Results of accuration obtained an accuracy to 80%. The results of  implementation Naïve Bayes algorithm with Smoothing Laplace, it can be seen the sentiment analysis of the subjects that lectures taught.","PeriodicalId":123899,"journal":{"name":"Jurnal Sistem Informasi Bisnis","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sistem Informasi Evaluasi Perkuliahan dengan Sentimen Analisis Menggunakan Naïve Bayes dan Smoothing Laplace\",\"authors\":\"Nilam Ramadhani, Novan Fajarianto\",\"doi\":\"10.21456/VOL10ISS2PP228-234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A good lecture is certainly a goal so that students achieve maximum learning outcomes. In order for good lecture quality, lecture evaluation needs to be done,beside lecturer professional competency training. In order to improve the quality of lectures, Departement Informatics of Madura University (UNIRA) evaluates lecturers' performance in each semester. Form of evaluation is a questionnaire that filled out by students.Results of the questionnaire, then it is analyzed to find out whether the comments are positive, negative, or neutral. The method that can be used to solve the problem of sentiment classification analysis is Naïve Bayes that combined with text processing techniques.The data comments that collected are 342. After grouping the comments by subject, there were 31 comments for subject Human and Computer Interaction (HCI). In this data comments then performed data cleaning, data transformation, text processing and labeling. Then classifying comments using Naïve Bayes with Smoothing Laplace. Results of accuration obtained an accuracy to 80%. The results of  implementation Naïve Bayes algorithm with Smoothing Laplace, it can be seen the sentiment analysis of the subjects that lectures taught.\",\"PeriodicalId\":123899,\"journal\":{\"name\":\"Jurnal Sistem Informasi Bisnis\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Sistem Informasi Bisnis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21456/VOL10ISS2PP228-234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sistem Informasi Bisnis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21456/VOL10ISS2PP228-234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

一个好的讲座当然是一个目标,以便学生获得最大的学习成果。为了提高讲座质量,除了对讲师进行专业能力培训外,还需要进行讲座评价。为了提高讲课质量,马杜拉大学信息系(UNIRA)每学期对讲师的表现进行评估。评价表是由学生填写的问卷。然后对问卷的结果进行分析,以确定评论是积极的,消极的还是中立的。可以用来解决情感分类分析问题的方法是Naïve贝叶斯结合文本处理技术。收集到的数据注释为342条。按学科分组后,共有31条学科人机交互(HCI)评价。在这些数据中,注释执行数据清理、数据转换、文本处理和标记。然后使用Naïve贝叶斯和平滑拉普拉斯对评论进行分类。结果表明,准确度可达80%。结果实现Naïve带平滑拉普拉斯的贝叶斯算法,可以看出对讲课对象的情感分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sistem Informasi Evaluasi Perkuliahan dengan Sentimen Analisis Menggunakan Naïve Bayes dan Smoothing Laplace
A good lecture is certainly a goal so that students achieve maximum learning outcomes. In order for good lecture quality, lecture evaluation needs to be done,beside lecturer professional competency training. In order to improve the quality of lectures, Departement Informatics of Madura University (UNIRA) evaluates lecturers' performance in each semester. Form of evaluation is a questionnaire that filled out by students.Results of the questionnaire, then it is analyzed to find out whether the comments are positive, negative, or neutral. The method that can be used to solve the problem of sentiment classification analysis is Naïve Bayes that combined with text processing techniques.The data comments that collected are 342. After grouping the comments by subject, there were 31 comments for subject Human and Computer Interaction (HCI). In this data comments then performed data cleaning, data transformation, text processing and labeling. Then classifying comments using Naïve Bayes with Smoothing Laplace. Results of accuration obtained an accuracy to 80%. The results of  implementation Naïve Bayes algorithm with Smoothing Laplace, it can be seen the sentiment analysis of the subjects that lectures taught.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信