{"title":"基于黏结-剪切-滞后模型的单向陶瓷基复合材料损伤研究","authors":"B. Yang, S. Mall","doi":"10.1115/imece2001/ad-25300","DOIUrl":null,"url":null,"abstract":"\n The present study develops a cohesive-shear-lag model to analyze the cycling stress-strain behavior of unidirectional fiber-reinforced ceramic matrix composites. The model, as a modification to a classical shear-lag model, takes into account matrix cracking, partial interfacial debonding, and partial breakage of fibers. The statistical nature of partial breakage of fibers is modeled by using a cohesive force law. The validity of the model is demonstrated by investigating stress-strain hysteresis loops of a unidirectional fiber-reinforced ceramic-glass matrix composite, SiC/1723. This example demonstrates the capability of the proposed model to characterize damage and deformation mechanisms of ceramic matrix composites under tension-tension cycling loading. The dominant progressive damage mechanism with cycling in this case is shown to be accumulation of fibers breakage, accompanied by increase in interfacial debonding and smoothening of frictional debonded interface.","PeriodicalId":442756,"journal":{"name":"Damage Initiation and Prediction in Composites, Sandwich Structures and Thermal Barrier Coatings","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Damage in Unidirectional Ceramic Matrix Composites Using a Cohesive-Shear-Lag Model\",\"authors\":\"B. Yang, S. Mall\",\"doi\":\"10.1115/imece2001/ad-25300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The present study develops a cohesive-shear-lag model to analyze the cycling stress-strain behavior of unidirectional fiber-reinforced ceramic matrix composites. The model, as a modification to a classical shear-lag model, takes into account matrix cracking, partial interfacial debonding, and partial breakage of fibers. The statistical nature of partial breakage of fibers is modeled by using a cohesive force law. The validity of the model is demonstrated by investigating stress-strain hysteresis loops of a unidirectional fiber-reinforced ceramic-glass matrix composite, SiC/1723. This example demonstrates the capability of the proposed model to characterize damage and deformation mechanisms of ceramic matrix composites under tension-tension cycling loading. The dominant progressive damage mechanism with cycling in this case is shown to be accumulation of fibers breakage, accompanied by increase in interfacial debonding and smoothening of frictional debonded interface.\",\"PeriodicalId\":442756,\"journal\":{\"name\":\"Damage Initiation and Prediction in Composites, Sandwich Structures and Thermal Barrier Coatings\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Damage Initiation and Prediction in Composites, Sandwich Structures and Thermal Barrier Coatings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2001/ad-25300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Damage Initiation and Prediction in Composites, Sandwich Structures and Thermal Barrier Coatings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/ad-25300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of Damage in Unidirectional Ceramic Matrix Composites Using a Cohesive-Shear-Lag Model
The present study develops a cohesive-shear-lag model to analyze the cycling stress-strain behavior of unidirectional fiber-reinforced ceramic matrix composites. The model, as a modification to a classical shear-lag model, takes into account matrix cracking, partial interfacial debonding, and partial breakage of fibers. The statistical nature of partial breakage of fibers is modeled by using a cohesive force law. The validity of the model is demonstrated by investigating stress-strain hysteresis loops of a unidirectional fiber-reinforced ceramic-glass matrix composite, SiC/1723. This example demonstrates the capability of the proposed model to characterize damage and deformation mechanisms of ceramic matrix composites under tension-tension cycling loading. The dominant progressive damage mechanism with cycling in this case is shown to be accumulation of fibers breakage, accompanied by increase in interfacial debonding and smoothening of frictional debonded interface.