基于多特征提取和模式识别的中药材智能识别

Ronghua Chen, Ying-jun Chen
{"title":"基于多特征提取和模式识别的中药材智能识别","authors":"Ronghua Chen, Ying-jun Chen","doi":"10.2991/MASTA-19.2019.66","DOIUrl":null,"url":null,"abstract":". A discussion about image pattern recognition for Tradition Chinese Medicine (TCM) materials was explained in this paper. 150 images of each category of TCM materials were gathered, in total of five categories. 80% of the images were distributed as training samples randomly and the other 20% were used to test the pattern recognition algorithms. A multi-feature vector for each image was proposed including textual features, shape features and category labels to train pattern recognition methods K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) and test the recognition rates. Statistics of average recognition rates were made and indicated that the methods could classified the chosen five categories of TCM materials significantly with the accuracy of around 70% in average, providing a new solution for TCM materials intelligent identification.","PeriodicalId":103896,"journal":{"name":"Proceedings of the 2019 International Conference on Modeling, Analysis, Simulation Technologies and Applications (MASTA 2019)","volume":"263 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Identification of Traditional Chinese Medicine Materials Based on Multi-feature Extraction and Pattern Recognition\",\"authors\":\"Ronghua Chen, Ying-jun Chen\",\"doi\":\"10.2991/MASTA-19.2019.66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". A discussion about image pattern recognition for Tradition Chinese Medicine (TCM) materials was explained in this paper. 150 images of each category of TCM materials were gathered, in total of five categories. 80% of the images were distributed as training samples randomly and the other 20% were used to test the pattern recognition algorithms. A multi-feature vector for each image was proposed including textual features, shape features and category labels to train pattern recognition methods K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) and test the recognition rates. Statistics of average recognition rates were made and indicated that the methods could classified the chosen five categories of TCM materials significantly with the accuracy of around 70% in average, providing a new solution for TCM materials intelligent identification.\",\"PeriodicalId\":103896,\"journal\":{\"name\":\"Proceedings of the 2019 International Conference on Modeling, Analysis, Simulation Technologies and Applications (MASTA 2019)\",\"volume\":\"263 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 International Conference on Modeling, Analysis, Simulation Technologies and Applications (MASTA 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/MASTA-19.2019.66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 International Conference on Modeling, Analysis, Simulation Technologies and Applications (MASTA 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/MASTA-19.2019.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

。本文对中医资料图像模式识别进行了探讨。每个类别收集150幅图像,共5个类别。80%的图像作为训练样本随机分布,另外20%用于测试模式识别算法。提出了包含文本特征、形状特征和类别标签的多特征向量,用于训练k -最近邻(KNN)和支持向量机(SVM)模式识别方法并测试识别率。对平均识别率进行统计,结果表明,该方法对所选的5类中药材分类效果显著,准确率平均在70%左右,为中药材智能识别提供了一种新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Identification of Traditional Chinese Medicine Materials Based on Multi-feature Extraction and Pattern Recognition
. A discussion about image pattern recognition for Tradition Chinese Medicine (TCM) materials was explained in this paper. 150 images of each category of TCM materials were gathered, in total of five categories. 80% of the images were distributed as training samples randomly and the other 20% were used to test the pattern recognition algorithms. A multi-feature vector for each image was proposed including textual features, shape features and category labels to train pattern recognition methods K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) and test the recognition rates. Statistics of average recognition rates were made and indicated that the methods could classified the chosen five categories of TCM materials significantly with the accuracy of around 70% in average, providing a new solution for TCM materials intelligent identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信