基于主题的知识图谱构建

Weichen Li, Patrick Abels, Zahra Ahmadi, Sophie Burkhardt, Benjamin Schiller, Iryna Gurevych, S. Kramer
{"title":"基于主题的知识图谱构建","authors":"Weichen Li, Patrick Abels, Zahra Ahmadi, Sophie Burkhardt, Benjamin Schiller, Iryna Gurevych, S. Kramer","doi":"10.1109/ICKG52313.2021.00049","DOIUrl":null,"url":null,"abstract":"Decision-making tasks usually follow five steps: identifying the problem, collecting data, extracting evidence, iden-tifying arguments, and making the decision. This paper focuses on two steps of decision-making: extracting evidence by building knowledge graphs (KGs) of specialized topics and identifying sentences' arguments through sentence-level argument mining. We present a hybrid model that combines topic modeling using latent Dirichlet allocation (LDA) and word embeddings to obtain external knowledge from structured and unstructured data. We use a topic model to extract topic- and sentence-specific evidence from the structured knowledge base Wikidata. A knowledge graph is constructed based on the cosine similarity between the entity word vectors of Wikidata and the vector of the given sentence. A second graph based on topic-specific articles found via Google supplements the general incompleteness of the structured knowledge base. Combining these graphs, we obtain a graph-based model that, as our evaluation shows, successfully capitalizes on both structured and unstructured data.","PeriodicalId":174126,"journal":{"name":"2021 IEEE International Conference on Big Knowledge (ICBK)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Topic-Guided Knowledge Graph Construction for Argument Mining\",\"authors\":\"Weichen Li, Patrick Abels, Zahra Ahmadi, Sophie Burkhardt, Benjamin Schiller, Iryna Gurevych, S. Kramer\",\"doi\":\"10.1109/ICKG52313.2021.00049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decision-making tasks usually follow five steps: identifying the problem, collecting data, extracting evidence, iden-tifying arguments, and making the decision. This paper focuses on two steps of decision-making: extracting evidence by building knowledge graphs (KGs) of specialized topics and identifying sentences' arguments through sentence-level argument mining. We present a hybrid model that combines topic modeling using latent Dirichlet allocation (LDA) and word embeddings to obtain external knowledge from structured and unstructured data. We use a topic model to extract topic- and sentence-specific evidence from the structured knowledge base Wikidata. A knowledge graph is constructed based on the cosine similarity between the entity word vectors of Wikidata and the vector of the given sentence. A second graph based on topic-specific articles found via Google supplements the general incompleteness of the structured knowledge base. Combining these graphs, we obtain a graph-based model that, as our evaluation shows, successfully capitalizes on both structured and unstructured data.\",\"PeriodicalId\":174126,\"journal\":{\"name\":\"2021 IEEE International Conference on Big Knowledge (ICBK)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Big Knowledge (ICBK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICKG52313.2021.00049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICKG52313.2021.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

决策任务通常遵循五个步骤:识别问题,收集数据,提取证据,识别论点,做出决定。本文重点研究了决策的两个步骤:通过构建专业主题的知识图来提取证据,通过句子级的论据挖掘来识别句子的论点。我们提出了一个混合模型,该模型结合了使用潜在狄利克雷分配(LDA)和词嵌入的主题建模,从结构化和非结构化数据中获取外部知识。我们使用主题模型从结构化知识库Wikidata中提取主题和句子特定的证据。基于维基数据实体词向量与给定句子向量之间的余弦相似度构建知识图。第二个图基于通过谷歌找到的特定主题文章,补充了结构化知识库的一般不完备性。结合这些图,我们得到了一个基于图的模型,正如我们的评估所示,它成功地利用了结构化和非结构化数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topic-Guided Knowledge Graph Construction for Argument Mining
Decision-making tasks usually follow five steps: identifying the problem, collecting data, extracting evidence, iden-tifying arguments, and making the decision. This paper focuses on two steps of decision-making: extracting evidence by building knowledge graphs (KGs) of specialized topics and identifying sentences' arguments through sentence-level argument mining. We present a hybrid model that combines topic modeling using latent Dirichlet allocation (LDA) and word embeddings to obtain external knowledge from structured and unstructured data. We use a topic model to extract topic- and sentence-specific evidence from the structured knowledge base Wikidata. A knowledge graph is constructed based on the cosine similarity between the entity word vectors of Wikidata and the vector of the given sentence. A second graph based on topic-specific articles found via Google supplements the general incompleteness of the structured knowledge base. Combining these graphs, we obtain a graph-based model that, as our evaluation shows, successfully capitalizes on both structured and unstructured data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信