约束多模型最大后验估计采用list Viterbi算法

V. Jilkov, Jeffrey H. Ledet, X. R. Li
{"title":"约束多模型最大后验估计采用list Viterbi算法","authors":"V. Jilkov, Jeffrey H. Ledet, X. R. Li","doi":"10.23919/ICIF.2017.8009649","DOIUrl":null,"url":null,"abstract":"This paper proposes a new approach for constrained multiple model (MM) maximum a posteriori (MAP) estimation through the expectation-maximization (EM) method by using our previously developed constrained sequential list Viterbi algorithm (CSLVA). The approach is general and applicable for any type of constraints provided they are verifiable. Specific algorithms for implementation are designed, and the performance of the proposed method is illustrated by simulation.","PeriodicalId":148407,"journal":{"name":"2017 20th International Conference on Information Fusion (Fusion)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Constrained multiple model maximum a posteriori estimation using list Viterbi algorithm\",\"authors\":\"V. Jilkov, Jeffrey H. Ledet, X. R. Li\",\"doi\":\"10.23919/ICIF.2017.8009649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new approach for constrained multiple model (MM) maximum a posteriori (MAP) estimation through the expectation-maximization (EM) method by using our previously developed constrained sequential list Viterbi algorithm (CSLVA). The approach is general and applicable for any type of constraints provided they are verifiable. Specific algorithms for implementation are designed, and the performance of the proposed method is illustrated by simulation.\",\"PeriodicalId\":148407,\"journal\":{\"name\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICIF.2017.8009649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th International Conference on Information Fusion (Fusion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICIF.2017.8009649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于期望最大化(EM)方法的约束多模型(MM)最大后验(MAP)估计的新方法,该方法采用了已有的约束序列列表Viterbi算法(CSLVA)。该方法是通用的,适用于任何类型的约束,只要它们是可验证的。设计了具体的实现算法,并通过仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constrained multiple model maximum a posteriori estimation using list Viterbi algorithm
This paper proposes a new approach for constrained multiple model (MM) maximum a posteriori (MAP) estimation through the expectation-maximization (EM) method by using our previously developed constrained sequential list Viterbi algorithm (CSLVA). The approach is general and applicable for any type of constraints provided they are verifiable. Specific algorithms for implementation are designed, and the performance of the proposed method is illustrated by simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信