基于深度强化学习的交通工程显式路径控制

Zeyu Luan, Lie Lu, Qing Li, Yong Jiang
{"title":"基于深度强化学习的交通工程显式路径控制","authors":"Zeyu Luan, Lie Lu, Qing Li, Yong Jiang","doi":"10.1109/GLOBECOM46510.2021.9685792","DOIUrl":null,"url":null,"abstract":"Segment Routing (SR) provides Traffic Engineering (TE) with Explicit Path Control (EPC) by steering data flows passing through a list of SR routers along a desired path. However, large-scale migration from a pure IP network to a full SR one requires prohibitive hardware replacement and software update. Therefore, network operators prefer to upgrade a subset of IP routers into SR routers during a transitional period. This paper proposes EPC-TE to optimize TE performance in hybrid IP/SR networks where partially deployed SR routers coexist with legacy IP routers. We propose a concept of key nodes to achieve EPC over desired paths and a criterion to select which IP routers to upgrade first under a pre-defined upgrading ratio. EPC-TE leverages Deep Reinforcement Learning (DRL) to inference the optimal traffic splitting ratio across multiple controllable paths between source-destination pairs. EPC-TE can achieve comparable TE performance as a full SR network with an upgrading ratio less than 30%. Extensive experimental results with real-world topologies show that EPC-TE significantly outperforms other baseline TE solutions in minimizing maximum link utilization.","PeriodicalId":200641,"journal":{"name":"2021 IEEE Global Communications Conference (GLOBECOM)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"EPC-TE: Explicit Path Control in Traffic Engineering with Deep Reinforcement Learning\",\"authors\":\"Zeyu Luan, Lie Lu, Qing Li, Yong Jiang\",\"doi\":\"10.1109/GLOBECOM46510.2021.9685792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segment Routing (SR) provides Traffic Engineering (TE) with Explicit Path Control (EPC) by steering data flows passing through a list of SR routers along a desired path. However, large-scale migration from a pure IP network to a full SR one requires prohibitive hardware replacement and software update. Therefore, network operators prefer to upgrade a subset of IP routers into SR routers during a transitional period. This paper proposes EPC-TE to optimize TE performance in hybrid IP/SR networks where partially deployed SR routers coexist with legacy IP routers. We propose a concept of key nodes to achieve EPC over desired paths and a criterion to select which IP routers to upgrade first under a pre-defined upgrading ratio. EPC-TE leverages Deep Reinforcement Learning (DRL) to inference the optimal traffic splitting ratio across multiple controllable paths between source-destination pairs. EPC-TE can achieve comparable TE performance as a full SR network with an upgrading ratio less than 30%. Extensive experimental results with real-world topologies show that EPC-TE significantly outperforms other baseline TE solutions in minimizing maximum link utilization.\",\"PeriodicalId\":200641,\"journal\":{\"name\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM46510.2021.9685792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM46510.2021.9685792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

分段路由(SR)为流量工程(TE)提供了显式路径控制(EPC),它引导数据流沿着期望的路径通过一系列SR路由器。然而,从纯IP网络到完整SR网络的大规模迁移需要大量的硬件更换和软件更新。因此,网络运营商倾向于在过渡时期将一部分IP路由器升级为SR路由器。本文提出EPC-TE来优化IP/SR混合网络中部分部署的SR路由器与传统IP路由器共存的TE性能。我们提出了在期望路径上实现EPC的关键节点概念,以及在预定义的升级比率下选择首先升级哪些IP路由器的标准。EPC-TE利用深度强化学习(DRL)来推断源-目的对之间多条可控路径的最佳流量分割比率。EPC-TE可以达到与全SR网络相当的TE性能,升级率不超过30%。实际拓扑的大量实验结果表明,EPC-TE在最小化最大链路利用率方面显著优于其他基线TE解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EPC-TE: Explicit Path Control in Traffic Engineering with Deep Reinforcement Learning
Segment Routing (SR) provides Traffic Engineering (TE) with Explicit Path Control (EPC) by steering data flows passing through a list of SR routers along a desired path. However, large-scale migration from a pure IP network to a full SR one requires prohibitive hardware replacement and software update. Therefore, network operators prefer to upgrade a subset of IP routers into SR routers during a transitional period. This paper proposes EPC-TE to optimize TE performance in hybrid IP/SR networks where partially deployed SR routers coexist with legacy IP routers. We propose a concept of key nodes to achieve EPC over desired paths and a criterion to select which IP routers to upgrade first under a pre-defined upgrading ratio. EPC-TE leverages Deep Reinforcement Learning (DRL) to inference the optimal traffic splitting ratio across multiple controllable paths between source-destination pairs. EPC-TE can achieve comparable TE performance as a full SR network with an upgrading ratio less than 30%. Extensive experimental results with real-world topologies show that EPC-TE significantly outperforms other baseline TE solutions in minimizing maximum link utilization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信