{"title":"基于用户兴趣和项目相关性的协同过滤推荐","authors":"Fei-yue Ye, Haolin Zhang","doi":"10.1109/ICALIP.2016.7846564","DOIUrl":null,"url":null,"abstract":"Collaborative filtering (CF) is one of the most commonly used recommendation technologies in the recommender systems of e-commerce. However, due to the sparsity of users' rating data and the single ratings similarity, traditional CF algorithms show certain shortcomings. Aiming at these problems, a CF recommendation algorithm based on users' interests and the correlation of items is proposed. By using the algorithm, the similarity of users is measured according to users' interests based on the categorical attributes of items, while that of items is computed by introducing the association rules of data mining. The results of the tests on Movielens dataset manifest that the modified algorithm presents higher recommendation accuracy than the traditional CF algorithms.","PeriodicalId":184170,"journal":{"name":"2016 International Conference on Audio, Language and Image Processing (ICALIP)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"A collaborative filtering recommendation based on users' interest and correlation of items\",\"authors\":\"Fei-yue Ye, Haolin Zhang\",\"doi\":\"10.1109/ICALIP.2016.7846564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collaborative filtering (CF) is one of the most commonly used recommendation technologies in the recommender systems of e-commerce. However, due to the sparsity of users' rating data and the single ratings similarity, traditional CF algorithms show certain shortcomings. Aiming at these problems, a CF recommendation algorithm based on users' interests and the correlation of items is proposed. By using the algorithm, the similarity of users is measured according to users' interests based on the categorical attributes of items, while that of items is computed by introducing the association rules of data mining. The results of the tests on Movielens dataset manifest that the modified algorithm presents higher recommendation accuracy than the traditional CF algorithms.\",\"PeriodicalId\":184170,\"journal\":{\"name\":\"2016 International Conference on Audio, Language and Image Processing (ICALIP)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Audio, Language and Image Processing (ICALIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICALIP.2016.7846564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Audio, Language and Image Processing (ICALIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALIP.2016.7846564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A collaborative filtering recommendation based on users' interest and correlation of items
Collaborative filtering (CF) is one of the most commonly used recommendation technologies in the recommender systems of e-commerce. However, due to the sparsity of users' rating data and the single ratings similarity, traditional CF algorithms show certain shortcomings. Aiming at these problems, a CF recommendation algorithm based on users' interests and the correlation of items is proposed. By using the algorithm, the similarity of users is measured according to users' interests based on the categorical attributes of items, while that of items is computed by introducing the association rules of data mining. The results of the tests on Movielens dataset manifest that the modified algorithm presents higher recommendation accuracy than the traditional CF algorithms.