利用单调性约束来降低标签噪声:一个实验评价

A. Feelders, Tijmen Kolkman
{"title":"利用单调性约束来降低标签噪声:一个实验评价","authors":"A. Feelders, Tijmen Kolkman","doi":"10.1109/IJCNN.2016.7727465","DOIUrl":null,"url":null,"abstract":"In some ordinal classification problems we know beforehand that the class label should be increasing (or decreasing) in the attributes. Such relations between class label and attributes are called monotone. We attempt to exploit such monotonicity constraints to reduce label noise. Noise may cause violations of the monotonicity constraint in the data set. In an attempt to reduce label noise, we make the data set monotone by relabeling data points. Through experiments on artificial data, we demonstrate that relabeling almost always produces an improved data set.","PeriodicalId":109405,"journal":{"name":"2016 International Joint Conference on Neural Networks (IJCNN)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Exploiting monotonicity constraints to reduce label noise: An experimental evaluation\",\"authors\":\"A. Feelders, Tijmen Kolkman\",\"doi\":\"10.1109/IJCNN.2016.7727465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In some ordinal classification problems we know beforehand that the class label should be increasing (or decreasing) in the attributes. Such relations between class label and attributes are called monotone. We attempt to exploit such monotonicity constraints to reduce label noise. Noise may cause violations of the monotonicity constraint in the data set. In an attempt to reduce label noise, we make the data set monotone by relabeling data points. Through experiments on artificial data, we demonstrate that relabeling almost always produces an improved data set.\",\"PeriodicalId\":109405,\"journal\":{\"name\":\"2016 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2016.7727465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2016.7727465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在一些有序分类问题中,我们事先知道类标签在属性中应该是递增的(或递减的)。类标签和属性之间的这种关系称为单调关系。我们试图利用这种单调性约束来减少标签噪声。噪声可能导致数据集的单调性约束的违反。为了减少标签噪声,我们通过重新标记数据点使数据集单调。通过对人工数据的实验,我们证明了重新标记几乎总是产生一个改进的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting monotonicity constraints to reduce label noise: An experimental evaluation
In some ordinal classification problems we know beforehand that the class label should be increasing (or decreasing) in the attributes. Such relations between class label and attributes are called monotone. We attempt to exploit such monotonicity constraints to reduce label noise. Noise may cause violations of the monotonicity constraint in the data set. In an attempt to reduce label noise, we make the data set monotone by relabeling data points. Through experiments on artificial data, we demonstrate that relabeling almost always produces an improved data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信