采用状态空间方法的基于ica的系统识别自适应滤波算法

Jun-Mei Yang, H. Sakai
{"title":"采用状态空间方法的基于ica的系统识别自适应滤波算法","authors":"Jun-Mei Yang, H. Sakai","doi":"10.1109/ICOSP.2008.4697116","DOIUrl":null,"url":null,"abstract":"This paper proposes a new ICA-based adaptive filter algorithm for system identification using a state space approach. An additive noise model is considered and the signal is separated from the noisy observation. First, we introduce an augmented state-space expression of the observed signal representing the problem in terms of ICA, and then using the natural gradient, we derive a new algorithm. The local convergence conditions of the proposed algorithm is derived. Some simulations are carried out to illustrate its effectiveness.","PeriodicalId":445699,"journal":{"name":"2008 9th International Conference on Signal Processing","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ICA-based adaptive filter algorithm for system identification using a state space approach\",\"authors\":\"Jun-Mei Yang, H. Sakai\",\"doi\":\"10.1109/ICOSP.2008.4697116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new ICA-based adaptive filter algorithm for system identification using a state space approach. An additive noise model is considered and the signal is separated from the noisy observation. First, we introduce an augmented state-space expression of the observed signal representing the problem in terms of ICA, and then using the natural gradient, we derive a new algorithm. The local convergence conditions of the proposed algorithm is derived. Some simulations are carried out to illustrate its effectiveness.\",\"PeriodicalId\":445699,\"journal\":{\"name\":\"2008 9th International Conference on Signal Processing\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 9th International Conference on Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.2008.4697116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 9th International Conference on Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2008.4697116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的基于ica的自适应滤波算法,利用状态空间方法进行系统辨识。考虑了加性噪声模型,将信号与噪声观测分离。首先,我们引入了用ICA表示问题的观测信号的增广状态空间表达式,然后利用自然梯度推导了一种新的算法。给出了该算法的局部收敛条件。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An ICA-based adaptive filter algorithm for system identification using a state space approach
This paper proposes a new ICA-based adaptive filter algorithm for system identification using a state space approach. An additive noise model is considered and the signal is separated from the noisy observation. First, we introduce an augmented state-space expression of the observed signal representing the problem in terms of ICA, and then using the natural gradient, we derive a new algorithm. The local convergence conditions of the proposed algorithm is derived. Some simulations are carried out to illustrate its effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信