最大熵法在多功能材料数据融合与不确定度量化中的应用

Wei Gao, W. Oates, P. Miles, Ralph C. Smith
{"title":"最大熵法在多功能材料数据融合与不确定度量化中的应用","authors":"Wei Gao, W. Oates, P. Miles, Ralph C. Smith","doi":"10.1115/SMASIS2018-7960","DOIUrl":null,"url":null,"abstract":"Bayesian statistics is a quintessential tool for model validation in many applications including smart materials, adaptive structures, and intelligent systems. It typically uses either experimental data or high-fidelity simulations to infer model parameter uncertainty of reduced order models due to experimental noise and homogenization of quantum or atomistic behavior. When heterogeneous data is available for Bayesian inference, open questions remain on appropriate methods to fuse data and avoid inappropriate weighting on individual data sets. To address this issue, we implement a Bayesian statistical method that begins with maximizing entropy. We show how this method can weight heterogeneous data automatically during the inference process through the error covariance. This Maximum Entropy (ME) method is demonstrated by quantifying uncertainty in 1) a ferroelectric domain structure model and 2) a finite deforming electrostrictive membrane model. The ferroelectric phase field model identifies continuum parameters from multiple density functional theory calculations. In the case of the electrostrictive membrane, parameters are estimated from both mechanical and electric displacement experimental measurements.","PeriodicalId":117187,"journal":{"name":"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of the Maximum Entropy Method to Multifunctional Materials for Data Fusion and Uncertainty Quantification\",\"authors\":\"Wei Gao, W. Oates, P. Miles, Ralph C. Smith\",\"doi\":\"10.1115/SMASIS2018-7960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bayesian statistics is a quintessential tool for model validation in many applications including smart materials, adaptive structures, and intelligent systems. It typically uses either experimental data or high-fidelity simulations to infer model parameter uncertainty of reduced order models due to experimental noise and homogenization of quantum or atomistic behavior. When heterogeneous data is available for Bayesian inference, open questions remain on appropriate methods to fuse data and avoid inappropriate weighting on individual data sets. To address this issue, we implement a Bayesian statistical method that begins with maximizing entropy. We show how this method can weight heterogeneous data automatically during the inference process through the error covariance. This Maximum Entropy (ME) method is demonstrated by quantifying uncertainty in 1) a ferroelectric domain structure model and 2) a finite deforming electrostrictive membrane model. The ferroelectric phase field model identifies continuum parameters from multiple density functional theory calculations. In the case of the electrostrictive membrane, parameters are estimated from both mechanical and electric displacement experimental measurements.\",\"PeriodicalId\":117187,\"journal\":{\"name\":\"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/SMASIS2018-7960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/SMASIS2018-7960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

贝叶斯统计是许多应用中模型验证的典型工具,包括智能材料,自适应结构和智能系统。它通常使用实验数据或高保真度模拟来推断由于实验噪声和量子或原子行为的均匀化而导致的降阶模型的模型参数不确定性。当异构数据可用于贝叶斯推理时,关于适当的方法来融合数据并避免对单个数据集进行不适当的加权的问题仍然存在。为了解决这个问题,我们实现了一个贝叶斯统计方法,从最大化熵开始。我们展示了该方法如何在推理过程中通过误差协方差自动对异构数据进行加权。通过量化铁电畴结构模型和有限变形电致伸缩膜模型的不确定性,证明了这种最大熵方法。铁电相场模型从多重密度泛函理论计算中识别连续统参数。在电伸缩膜的情况下,从机械和电位移实验测量中估计参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of the Maximum Entropy Method to Multifunctional Materials for Data Fusion and Uncertainty Quantification
Bayesian statistics is a quintessential tool for model validation in many applications including smart materials, adaptive structures, and intelligent systems. It typically uses either experimental data or high-fidelity simulations to infer model parameter uncertainty of reduced order models due to experimental noise and homogenization of quantum or atomistic behavior. When heterogeneous data is available for Bayesian inference, open questions remain on appropriate methods to fuse data and avoid inappropriate weighting on individual data sets. To address this issue, we implement a Bayesian statistical method that begins with maximizing entropy. We show how this method can weight heterogeneous data automatically during the inference process through the error covariance. This Maximum Entropy (ME) method is demonstrated by quantifying uncertainty in 1) a ferroelectric domain structure model and 2) a finite deforming electrostrictive membrane model. The ferroelectric phase field model identifies continuum parameters from multiple density functional theory calculations. In the case of the electrostrictive membrane, parameters are estimated from both mechanical and electric displacement experimental measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信