{"title":"时间平行坐标中的深度线索和密度","authors":"J. Johansson, P. Ljung, M. Cooper","doi":"10.2312/VisSym/EuroVis07/035-042","DOIUrl":null,"url":null,"abstract":"This paper introduces Temporal Density Parallel Coordinates (TDPC) and Depth Cue Parallel Coordinates (DCPC) which extend the standard 2D parallel coordinates technique to capture time-varying dynamics. The proposed techniques can be used to analyse temporal positions of data items as well as temporal positions of changes occurring using 2D displays. To represent temporal changes, polygons (instead of traditional lines) are rendered in parallel coordinates. The results presented show that rendering polygons is superior at revealing large temporal changes. Both TDPC and DCPC have been efficiently implemented on the GPU allowing the visualization of thousands of data items over thousands of time steps at interactive frame rates.","PeriodicalId":224719,"journal":{"name":"Eurographics Conference on Visualization","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Depth Cues and Density in Temporal Parallel Coordinates\",\"authors\":\"J. Johansson, P. Ljung, M. Cooper\",\"doi\":\"10.2312/VisSym/EuroVis07/035-042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces Temporal Density Parallel Coordinates (TDPC) and Depth Cue Parallel Coordinates (DCPC) which extend the standard 2D parallel coordinates technique to capture time-varying dynamics. The proposed techniques can be used to analyse temporal positions of data items as well as temporal positions of changes occurring using 2D displays. To represent temporal changes, polygons (instead of traditional lines) are rendered in parallel coordinates. The results presented show that rendering polygons is superior at revealing large temporal changes. Both TDPC and DCPC have been efficiently implemented on the GPU allowing the visualization of thousands of data items over thousands of time steps at interactive frame rates.\",\"PeriodicalId\":224719,\"journal\":{\"name\":\"Eurographics Conference on Visualization\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurographics Conference on Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/VisSym/EuroVis07/035-042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Conference on Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/VisSym/EuroVis07/035-042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Depth Cues and Density in Temporal Parallel Coordinates
This paper introduces Temporal Density Parallel Coordinates (TDPC) and Depth Cue Parallel Coordinates (DCPC) which extend the standard 2D parallel coordinates technique to capture time-varying dynamics. The proposed techniques can be used to analyse temporal positions of data items as well as temporal positions of changes occurring using 2D displays. To represent temporal changes, polygons (instead of traditional lines) are rendered in parallel coordinates. The results presented show that rendering polygons is superior at revealing large temporal changes. Both TDPC and DCPC have been efficiently implemented on the GPU allowing the visualization of thousands of data items over thousands of time steps at interactive frame rates.