非线性时间序列分析中的误差函数选择

D. F. Drake, Douglas B. Williams
{"title":"非线性时间序列分析中的误差函数选择","authors":"D. F. Drake, Douglas B. Williams","doi":"10.1109/ICASSP.1992.226616","DOIUrl":null,"url":null,"abstract":"The extreme sensitivity of a chaotic system's steady state response to small changes in its initial conditions makes long term prediction of the evolution of such a system difficult, if not impossible. In the framework of parameter estimation, it is shown how this sensitivity can hinder attempts to determine model parameters that will reproduce a target chaotic time sequence. Specifically, a waveform error minimization technique based on gradient descent optimization is not well suited for estimating the parameters of a strongly chaotic system. A modification of this minimization procedure that avoids some of the obstacles present when estimating the parameters of a chaotic system is proposed.<<ETX>>","PeriodicalId":163713,"journal":{"name":"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On error function selection for the analysis of nonlinear time series\",\"authors\":\"D. F. Drake, Douglas B. Williams\",\"doi\":\"10.1109/ICASSP.1992.226616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The extreme sensitivity of a chaotic system's steady state response to small changes in its initial conditions makes long term prediction of the evolution of such a system difficult, if not impossible. In the framework of parameter estimation, it is shown how this sensitivity can hinder attempts to determine model parameters that will reproduce a target chaotic time sequence. Specifically, a waveform error minimization technique based on gradient descent optimization is not well suited for estimating the parameters of a strongly chaotic system. A modification of this minimization procedure that avoids some of the obstacles present when estimating the parameters of a chaotic system is proposed.<<ETX>>\",\"PeriodicalId\":163713,\"journal\":{\"name\":\"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1992.226616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1992.226616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

混沌系统的稳态响应对其初始条件的微小变化的极端敏感性,使得对这种系统的演变进行长期预测变得困难,如果不是不可能的话。在参数估计的框架中,它显示了这种敏感性如何阻碍确定将再现目标混沌时间序列的模型参数的尝试。具体来说,基于梯度下降优化的波形误差最小化技术不适用于强混沌系统的参数估计。提出了一种改进的最小化过程,避免了估计混沌系统参数时存在的一些障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On error function selection for the analysis of nonlinear time series
The extreme sensitivity of a chaotic system's steady state response to small changes in its initial conditions makes long term prediction of the evolution of such a system difficult, if not impossible. In the framework of parameter estimation, it is shown how this sensitivity can hinder attempts to determine model parameters that will reproduce a target chaotic time sequence. Specifically, a waveform error minimization technique based on gradient descent optimization is not well suited for estimating the parameters of a strongly chaotic system. A modification of this minimization procedure that avoids some of the obstacles present when estimating the parameters of a chaotic system is proposed.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信