{"title":"二阶类型的子类型问题是不可确定的","authors":"J. Tiuryn, P. Urzyczyn","doi":"10.1109/LICS.1996.561306","DOIUrl":null,"url":null,"abstract":"We prove that the subtyping problem induced by Mitchell's containment relation (1988) for second-order polymorphic types is undecidable. It follows that type-checking is undecidable for the polymorphic lambda-calculus extended by an appropriate subsumption rule.","PeriodicalId":382663,"journal":{"name":"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"The subtyping problem for second-order types is undecidable\",\"authors\":\"J. Tiuryn, P. Urzyczyn\",\"doi\":\"10.1109/LICS.1996.561306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the subtyping problem induced by Mitchell's containment relation (1988) for second-order polymorphic types is undecidable. It follows that type-checking is undecidable for the polymorphic lambda-calculus extended by an appropriate subsumption rule.\",\"PeriodicalId\":382663,\"journal\":{\"name\":\"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.1996.561306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1996.561306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The subtyping problem for second-order types is undecidable
We prove that the subtyping problem induced by Mitchell's containment relation (1988) for second-order polymorphic types is undecidable. It follows that type-checking is undecidable for the polymorphic lambda-calculus extended by an appropriate subsumption rule.