D. Viejo, J. G. Rodríguez, M. Cazorla, D. G. Méndez, Magnus Johnsson
{"title":"基于三维gng的6DoF自运动重建","authors":"D. Viejo, J. G. Rodríguez, M. Cazorla, D. G. Méndez, Magnus Johnsson","doi":"10.1109/IJCNN.2011.6033337","DOIUrl":null,"url":null,"abstract":"Several recent works deal with 3D data in mobile robotic problems, e.g. mapping. Data come from any kind of sensor (time of flight cameras and 3D lasers) providing a huge amount of unorganized 3D data. In this paper we detail an efficient method to build complete 3D models from a Growing Neural Gas (GNG). We show that the use of GNG provides better results than other approaches. The GNG obtained is then applied to a sequence. From GNG structure, we propose to calculate planar patches and thus obtaining a fast method to compute the movement performed by a mobile robot by means of a 3D models registration algorithm. Final results of 3D mapping are also shown.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using 3D GNG-based reconstruction for 6DoF egomotion\",\"authors\":\"D. Viejo, J. G. Rodríguez, M. Cazorla, D. G. Méndez, Magnus Johnsson\",\"doi\":\"10.1109/IJCNN.2011.6033337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several recent works deal with 3D data in mobile robotic problems, e.g. mapping. Data come from any kind of sensor (time of flight cameras and 3D lasers) providing a huge amount of unorganized 3D data. In this paper we detail an efficient method to build complete 3D models from a Growing Neural Gas (GNG). We show that the use of GNG provides better results than other approaches. The GNG obtained is then applied to a sequence. From GNG structure, we propose to calculate planar patches and thus obtaining a fast method to compute the movement performed by a mobile robot by means of a 3D models registration algorithm. Final results of 3D mapping are also shown.\",\"PeriodicalId\":415833,\"journal\":{\"name\":\"The 2011 International Joint Conference on Neural Networks\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2011 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2011.6033337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using 3D GNG-based reconstruction for 6DoF egomotion
Several recent works deal with 3D data in mobile robotic problems, e.g. mapping. Data come from any kind of sensor (time of flight cameras and 3D lasers) providing a huge amount of unorganized 3D data. In this paper we detail an efficient method to build complete 3D models from a Growing Neural Gas (GNG). We show that the use of GNG provides better results than other approaches. The GNG obtained is then applied to a sequence. From GNG structure, we propose to calculate planar patches and thus obtaining a fast method to compute the movement performed by a mobile robot by means of a 3D models registration algorithm. Final results of 3D mapping are also shown.