{"title":"基于MEDA生物芯片的单目标流体混合物制备的最小浪费","authors":"Debraj Kundu, Sudip Roy","doi":"10.1109/DSD57027.2022.00113","DOIUrl":null,"url":null,"abstract":"Sample preparation is an inherent procedure of many biochemical applications, and digital microfluidic biochips (DMBs) proved to be very effective in performing such a procedure. In a single mixing step, conventional DMBs can mix two droplets in 1:1 ratio only. Due to this limitation, DMBs suffer from heavy fluid wastage and large number of mixing steps. However, the next generation DMBs, i.e., micro-electrode-dot-array (MEDA) biochips can realize multiple mixing ratios and are able to overcome a lot of those limitations. In this paper, we present a heuristic-based sample preparation algorithm, specifically a mixing algorithm called Division by Factor Method for Mixing that exploits the mixing models of MEDA biochips. We propose another mixing algorithm for MEDA biochips called Single Target Waste Minimization (STWM), which minimizes the wastage of fluids and determines an optimized mixing graph. Simulation results confirm that the proposed STWM method outperforms the state-of-the-art method in terms of minimizing the number of waste fluids, reducing the total reagent usage, and minimizing the number of mixing operations.","PeriodicalId":211723,"journal":{"name":"2022 25th Euromicro Conference on Digital System Design (DSD)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MEDA Biochip based Single- Target Fluidic Mixture Preparation with Minimum Wastage\",\"authors\":\"Debraj Kundu, Sudip Roy\",\"doi\":\"10.1109/DSD57027.2022.00113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sample preparation is an inherent procedure of many biochemical applications, and digital microfluidic biochips (DMBs) proved to be very effective in performing such a procedure. In a single mixing step, conventional DMBs can mix two droplets in 1:1 ratio only. Due to this limitation, DMBs suffer from heavy fluid wastage and large number of mixing steps. However, the next generation DMBs, i.e., micro-electrode-dot-array (MEDA) biochips can realize multiple mixing ratios and are able to overcome a lot of those limitations. In this paper, we present a heuristic-based sample preparation algorithm, specifically a mixing algorithm called Division by Factor Method for Mixing that exploits the mixing models of MEDA biochips. We propose another mixing algorithm for MEDA biochips called Single Target Waste Minimization (STWM), which minimizes the wastage of fluids and determines an optimized mixing graph. Simulation results confirm that the proposed STWM method outperforms the state-of-the-art method in terms of minimizing the number of waste fluids, reducing the total reagent usage, and minimizing the number of mixing operations.\",\"PeriodicalId\":211723,\"journal\":{\"name\":\"2022 25th Euromicro Conference on Digital System Design (DSD)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 25th Euromicro Conference on Digital System Design (DSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSD57027.2022.00113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 25th Euromicro Conference on Digital System Design (DSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD57027.2022.00113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MEDA Biochip based Single- Target Fluidic Mixture Preparation with Minimum Wastage
Sample preparation is an inherent procedure of many biochemical applications, and digital microfluidic biochips (DMBs) proved to be very effective in performing such a procedure. In a single mixing step, conventional DMBs can mix two droplets in 1:1 ratio only. Due to this limitation, DMBs suffer from heavy fluid wastage and large number of mixing steps. However, the next generation DMBs, i.e., micro-electrode-dot-array (MEDA) biochips can realize multiple mixing ratios and are able to overcome a lot of those limitations. In this paper, we present a heuristic-based sample preparation algorithm, specifically a mixing algorithm called Division by Factor Method for Mixing that exploits the mixing models of MEDA biochips. We propose another mixing algorithm for MEDA biochips called Single Target Waste Minimization (STWM), which minimizes the wastage of fluids and determines an optimized mixing graph. Simulation results confirm that the proposed STWM method outperforms the state-of-the-art method in terms of minimizing the number of waste fluids, reducing the total reagent usage, and minimizing the number of mixing operations.