精细tashkeel:微调精确阿拉伯文本变音符的字节级模型

Bashar Al-Rfooh, Gheith A. Abandah, Rami Al-Rfou
{"title":"精细tashkeel:微调精确阿拉伯文本变音符的字节级模型","authors":"Bashar Al-Rfooh, Gheith A. Abandah, Rami Al-Rfou","doi":"10.1109/JEEIT58638.2023.10185725","DOIUrl":null,"url":null,"abstract":"Most of previous work on learning diacritization of the Arabic language relied on training models from scratch. In this paper, we investigate how to leverage pre-trained language models to learn diacritization. We fine-tune token-free pre-trained multilingual models (ByT5) to learn to predict and insert missing diacritics in Arabic text, a complex task that requires understanding the sentence semantics and the morphological structure of the tokens. We achieve state-of-the-art accuracy on the dia-critization task with minimal amount of training and no feature engineering, reducing WER (word error rate) by 40%. We release our fine-tuned models for the greater benefit of the researchers in the community.","PeriodicalId":177556,"journal":{"name":"2023 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fine-Tashkeel: Fine-Tuning Byte-Level Models for Accurate Arabic Text Diacritization\",\"authors\":\"Bashar Al-Rfooh, Gheith A. Abandah, Rami Al-Rfou\",\"doi\":\"10.1109/JEEIT58638.2023.10185725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of previous work on learning diacritization of the Arabic language relied on training models from scratch. In this paper, we investigate how to leverage pre-trained language models to learn diacritization. We fine-tune token-free pre-trained multilingual models (ByT5) to learn to predict and insert missing diacritics in Arabic text, a complex task that requires understanding the sentence semantics and the morphological structure of the tokens. We achieve state-of-the-art accuracy on the dia-critization task with minimal amount of training and no feature engineering, reducing WER (word error rate) by 40%. We release our fine-tuned models for the greater benefit of the researchers in the community.\",\"PeriodicalId\":177556,\"journal\":{\"name\":\"2023 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JEEIT58638.2023.10185725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JEEIT58638.2023.10185725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

以前学习阿拉伯语变音符的大部分工作都依赖于从零开始的训练模型。在本文中,我们研究了如何利用预训练的语言模型来学习变音符。我们对无标记的预训练多语言模型(ByT5)进行了微调,以学习预测和插入阿拉伯文本中缺失的变音符号,这是一项复杂的任务,需要理解句子语义和标记的形态结构。我们用最少的训练和没有特征工程的情况下实现了最先进的数字化任务的准确性,将WER(单词错误率)降低了40%。我们发布了经过微调的模型,以使社区中的研究人员获得更大的利益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine-Tashkeel: Fine-Tuning Byte-Level Models for Accurate Arabic Text Diacritization
Most of previous work on learning diacritization of the Arabic language relied on training models from scratch. In this paper, we investigate how to leverage pre-trained language models to learn diacritization. We fine-tune token-free pre-trained multilingual models (ByT5) to learn to predict and insert missing diacritics in Arabic text, a complex task that requires understanding the sentence semantics and the morphological structure of the tokens. We achieve state-of-the-art accuracy on the dia-critization task with minimal amount of training and no feature engineering, reducing WER (word error rate) by 40%. We release our fine-tuned models for the greater benefit of the researchers in the community.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信