脑MRI尾状核自动分割FS+LDDMM的验证

Shahab U. Ansari
{"title":"脑MRI尾状核自动分割FS+LDDMM的验证","authors":"Shahab U. Ansari","doi":"10.1145/1943628.1943638","DOIUrl":null,"url":null,"abstract":"For over last three decades, numerous automatic brain segmentation techniques in magnetic resonance (MR) images have been proposed. These techniques, however, need to be validated comprehensively. In this study, FS+LDDMM, a recently proposed fully automatic template-based brain segmentation technique, is validated. The validation method uses novel approach in which dependency of FS+LDDMM on initial segmentation parameters is evaluated. These segmentation parameters include choice of template, gross alignment, cropping size and initialization schemes. A database of 46 MR images from young ADHD subjects of an average age of 10.6 years is employed to segment caudate nucleus in subcortical region. The accuracy of the segmentation is computed by comparing FS+LDDMM segmentation with gold standard manual segmentation using metrics, such as, percent volume error, dice coefficient, L1 error and intraclass correlation coefficient (ICC). The FS+LDDMM shows robustness to all these parameters and outperforms FreeSurfer (FS) segmentation. To generalize the performance of FS+LDDMM, however, more experiments need to be conducted for various subcortical objects.","PeriodicalId":434420,"journal":{"name":"International Conference on Frontiers of Information Technology","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Validation of FS+LDDMM by automatic segmentation of caudate nucleus in brain MRI\",\"authors\":\"Shahab U. Ansari\",\"doi\":\"10.1145/1943628.1943638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For over last three decades, numerous automatic brain segmentation techniques in magnetic resonance (MR) images have been proposed. These techniques, however, need to be validated comprehensively. In this study, FS+LDDMM, a recently proposed fully automatic template-based brain segmentation technique, is validated. The validation method uses novel approach in which dependency of FS+LDDMM on initial segmentation parameters is evaluated. These segmentation parameters include choice of template, gross alignment, cropping size and initialization schemes. A database of 46 MR images from young ADHD subjects of an average age of 10.6 years is employed to segment caudate nucleus in subcortical region. The accuracy of the segmentation is computed by comparing FS+LDDMM segmentation with gold standard manual segmentation using metrics, such as, percent volume error, dice coefficient, L1 error and intraclass correlation coefficient (ICC). The FS+LDDMM shows robustness to all these parameters and outperforms FreeSurfer (FS) segmentation. To generalize the performance of FS+LDDMM, however, more experiments need to be conducted for various subcortical objects.\",\"PeriodicalId\":434420,\"journal\":{\"name\":\"International Conference on Frontiers of Information Technology\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Frontiers of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1943628.1943638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Frontiers of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1943628.1943638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在过去的三十年里,人们提出了许多磁共振图像的自动脑分割技术。然而,这些技术需要全面验证。本研究验证了最近提出的基于模板的全自动脑分割技术FS+LDDMM。验证方法采用了一种新颖的方法,评估了FS+LDDMM对初始分割参数的依赖关系。这些分割参数包括模板选择、粗对齐、裁剪大小和初始化方案。利用平均年龄10.6岁的年轻ADHD受试者的46张MR图像数据库对皮质下区域尾状核进行分割。利用体积误差百分比、骰子系数、L1误差和类内相关系数(ICC)等指标,将FS+LDDMM分割与金标准手工分割进行比较,计算分割的准确性。FS+LDDMM对所有这些参数都表现出鲁棒性,并且优于FS分割。然而,为了推广FS+LDDMM的性能,还需要对各种皮层下物体进行更多的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Validation of FS+LDDMM by automatic segmentation of caudate nucleus in brain MRI
For over last three decades, numerous automatic brain segmentation techniques in magnetic resonance (MR) images have been proposed. These techniques, however, need to be validated comprehensively. In this study, FS+LDDMM, a recently proposed fully automatic template-based brain segmentation technique, is validated. The validation method uses novel approach in which dependency of FS+LDDMM on initial segmentation parameters is evaluated. These segmentation parameters include choice of template, gross alignment, cropping size and initialization schemes. A database of 46 MR images from young ADHD subjects of an average age of 10.6 years is employed to segment caudate nucleus in subcortical region. The accuracy of the segmentation is computed by comparing FS+LDDMM segmentation with gold standard manual segmentation using metrics, such as, percent volume error, dice coefficient, L1 error and intraclass correlation coefficient (ICC). The FS+LDDMM shows robustness to all these parameters and outperforms FreeSurfer (FS) segmentation. To generalize the performance of FS+LDDMM, however, more experiments need to be conducted for various subcortical objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信