用信号加噪声模型估计资产收益波动性的持久性

G. Caporale, L. Gil‐Alana
{"title":"用信号加噪声模型估计资产收益波动性的持久性","authors":"G. Caporale, L. Gil‐Alana","doi":"10.2139/ssrn.1639471","DOIUrl":null,"url":null,"abstract":"This paper examines the degree of persistence in the volatility of financial time series using a Long Memory Stochastic Volatility (LMSV) model. Specifically, it employs a Gaussian semiparametric (or local Whittle) estimator of the memory parameter, based on the frequency domain, proposed by Robinson (1995a), and shown by Arteche (2004) to be consistent and asymptotically normal in the context of signal plus noise models. Daily data on the NASDAQ index are analysed. The results suggest that volatility has a component of long- memory behaviour, the order of integration ranging between 0.3 and 0.5, the series being therefore stationary and mean-reverting.","PeriodicalId":418701,"journal":{"name":"ERN: Time-Series Models (Single) (Topic)","volume":"2 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Estimating Persistence in the Volatility of Asset Returns with Signal Plus Noise Models\",\"authors\":\"G. Caporale, L. Gil‐Alana\",\"doi\":\"10.2139/ssrn.1639471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines the degree of persistence in the volatility of financial time series using a Long Memory Stochastic Volatility (LMSV) model. Specifically, it employs a Gaussian semiparametric (or local Whittle) estimator of the memory parameter, based on the frequency domain, proposed by Robinson (1995a), and shown by Arteche (2004) to be consistent and asymptotically normal in the context of signal plus noise models. Daily data on the NASDAQ index are analysed. The results suggest that volatility has a component of long- memory behaviour, the order of integration ranging between 0.3 and 0.5, the series being therefore stationary and mean-reverting.\",\"PeriodicalId\":418701,\"journal\":{\"name\":\"ERN: Time-Series Models (Single) (Topic)\",\"volume\":\"2 7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Time-Series Models (Single) (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1639471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Time-Series Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1639471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文利用长记忆随机波动率(LMSV)模型检验了金融时间序列波动率的持续程度。具体来说,它采用了基于频域的记忆参数的高斯半参数(或局部Whittle)估计量,由Robinson (1995a)提出,Arteche(2004)证明在信号加噪声模型的背景下是一致的和渐近正态的。分析了纳斯达克指数的每日数据。结果表明,波动率具有长记忆行为的组成部分,积分阶在0.3和0.5之间,因此该序列是平稳的和均值回归的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Persistence in the Volatility of Asset Returns with Signal Plus Noise Models
This paper examines the degree of persistence in the volatility of financial time series using a Long Memory Stochastic Volatility (LMSV) model. Specifically, it employs a Gaussian semiparametric (or local Whittle) estimator of the memory parameter, based on the frequency domain, proposed by Robinson (1995a), and shown by Arteche (2004) to be consistent and asymptotically normal in the context of signal plus noise models. Daily data on the NASDAQ index are analysed. The results suggest that volatility has a component of long- memory behaviour, the order of integration ranging between 0.3 and 0.5, the series being therefore stationary and mean-reverting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信