旋转球帽上稳态斯托克斯流的解析解

H. Kitauchi, H. Simmons, M. Ikeda
{"title":"旋转球帽上稳态斯托克斯流的解析解","authors":"H. Kitauchi, H. Simmons, M. Ikeda","doi":"10.1109/OCEANS.2004.1406346","DOIUrl":null,"url":null,"abstract":"An analytic solution of two-dimensional steady, linear, viscous flow on a spherical cap - the region of a sphere which lies above (or below) a given plane - rotating about its center is obtained. An inflow and an outflow on the boundary of the spherical section drive the fluid motion. The solution of the stream function is expressed as the Fourier series in longitude and the first-kind associated Legendre functions of complex degrees in cosine of colatitude. The results support the previous study on the approximation analysis and laboratory experiment","PeriodicalId":390971,"journal":{"name":"Oceans '04 MTS/IEEE Techno-Ocean '04 (IEEE Cat. No.04CH37600)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An analytic solution of steady Stokes flow on a rotating spherical cap\",\"authors\":\"H. Kitauchi, H. Simmons, M. Ikeda\",\"doi\":\"10.1109/OCEANS.2004.1406346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An analytic solution of two-dimensional steady, linear, viscous flow on a spherical cap - the region of a sphere which lies above (or below) a given plane - rotating about its center is obtained. An inflow and an outflow on the boundary of the spherical section drive the fluid motion. The solution of the stream function is expressed as the Fourier series in longitude and the first-kind associated Legendre functions of complex degrees in cosine of colatitude. The results support the previous study on the approximation analysis and laboratory experiment\",\"PeriodicalId\":390971,\"journal\":{\"name\":\"Oceans '04 MTS/IEEE Techno-Ocean '04 (IEEE Cat. No.04CH37600)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oceans '04 MTS/IEEE Techno-Ocean '04 (IEEE Cat. No.04CH37600)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANS.2004.1406346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oceans '04 MTS/IEEE Techno-Ocean '04 (IEEE Cat. No.04CH37600)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.2004.1406346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文得到了围绕其中心旋转的球面上二维稳定、线性、粘性流动的解析解。球面是指球面在给定平面上或平面下的区域。球体截面边界上的流入和流出驱动流体运动。流函数的解在经度上表示为傅里叶级数,在余弦上表示为第一类相关的复次勒让德函数。所得结果支持了前人的近似分析和室内实验研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An analytic solution of steady Stokes flow on a rotating spherical cap
An analytic solution of two-dimensional steady, linear, viscous flow on a spherical cap - the region of a sphere which lies above (or below) a given plane - rotating about its center is obtained. An inflow and an outflow on the boundary of the spherical section drive the fluid motion. The solution of the stream function is expressed as the Fourier series in longitude and the first-kind associated Legendre functions of complex degrees in cosine of colatitude. The results support the previous study on the approximation analysis and laboratory experiment
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信