图的f_h和的维纳索引

L. Alex, G. Indulal
{"title":"图的f_h和的维纳索引","authors":"L. Alex, G. Indulal","doi":"10.37418/jcsam.3.2.1","DOIUrl":null,"url":null,"abstract":"Wiener index is the first among the long list of topological indices which was used to correlate structural and chemical properties of molecular graphs. In \\cite{Eli} M. Eliasi, B. Taeri defined four new sums of graphs based on the subdivision of edges with regard to the cartesian product and computed their Wiener index. In this paper, we define a new class of sums called $F_H$ sums and compute the Wiener index of the resulting graph in terms of the Wiener indices of the component graphs so that the results in \\cite{Eli} becomes a particular case of the Wiener index of $F_H$ sums for $H = K_1$, the complete graph on a single vertex.","PeriodicalId":361024,"journal":{"name":"Journal of Computer Science and Applied Mathematics","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ON THE WIENER INDEX OF F_H SUMS OF GRAPHS\",\"authors\":\"L. Alex, G. Indulal\",\"doi\":\"10.37418/jcsam.3.2.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wiener index is the first among the long list of topological indices which was used to correlate structural and chemical properties of molecular graphs. In \\\\cite{Eli} M. Eliasi, B. Taeri defined four new sums of graphs based on the subdivision of edges with regard to the cartesian product and computed their Wiener index. In this paper, we define a new class of sums called $F_H$ sums and compute the Wiener index of the resulting graph in terms of the Wiener indices of the component graphs so that the results in \\\\cite{Eli} becomes a particular case of the Wiener index of $F_H$ sums for $H = K_1$, the complete graph on a single vertex.\",\"PeriodicalId\":361024,\"journal\":{\"name\":\"Journal of Computer Science and Applied Mathematics\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37418/jcsam.3.2.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/jcsam.3.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

维纳指数是一长串拓扑指数中第一个用来关联分子图的结构和化学性质的指数。在\cite{Eli}中,M. Eliasi, B. Taeri基于笛卡尔积的边细分定义了四种新的图和,并计算了它们的维纳指数。在本文中,我们定义了一类新的和,称为$F_H$和,并根据组成图的Wiener指数计算了结果图的Wiener指数,使得\cite{Eli}的结果成为单顶点完全图$H = K_1$的Wiener指数$F_H$和的特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON THE WIENER INDEX OF F_H SUMS OF GRAPHS
Wiener index is the first among the long list of topological indices which was used to correlate structural and chemical properties of molecular graphs. In \cite{Eli} M. Eliasi, B. Taeri defined four new sums of graphs based on the subdivision of edges with regard to the cartesian product and computed their Wiener index. In this paper, we define a new class of sums called $F_H$ sums and compute the Wiener index of the resulting graph in terms of the Wiener indices of the component graphs so that the results in \cite{Eli} becomes a particular case of the Wiener index of $F_H$ sums for $H = K_1$, the complete graph on a single vertex.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信