DualDiv:在可解释的混合推荐中多样化的项目和解释风格

Kosetsu Tsukuda, Masataka Goto
{"title":"DualDiv:在可解释的混合推荐中多样化的项目和解释风格","authors":"Kosetsu Tsukuda, Masataka Goto","doi":"10.1145/3298689.3347063","DOIUrl":null,"url":null,"abstract":"In recommender systems, item diversification and explainable recommendations improve users' satisfaction. Unlike traditional explainable recommendations that display a single explanation for each item, explainable hybrid recommendations display multiple explanations for each item and are, therefore, more beneficial for users. When multiple explanations are displayed, one problem is that similar sets of explanation styles (ESs) such as user-based, item-based, and popularity-based may be displayed for similar items. Although item diversification has been studied well, the question of how to diversify the ESs remains underexplored. In this paper, we propose a method for diversifying ESs and a framework, called DualDiv, that recommends items by diversifying both the items and the ESs. Our experimental results show that DualDiv can increase the diversity of the items and the ESs without largely reducing the recommendation accuracy.","PeriodicalId":215384,"journal":{"name":"Proceedings of the 13th ACM Conference on Recommender Systems","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"DualDiv: diversifying items and explanation styles in explainable hybrid recommendation\",\"authors\":\"Kosetsu Tsukuda, Masataka Goto\",\"doi\":\"10.1145/3298689.3347063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recommender systems, item diversification and explainable recommendations improve users' satisfaction. Unlike traditional explainable recommendations that display a single explanation for each item, explainable hybrid recommendations display multiple explanations for each item and are, therefore, more beneficial for users. When multiple explanations are displayed, one problem is that similar sets of explanation styles (ESs) such as user-based, item-based, and popularity-based may be displayed for similar items. Although item diversification has been studied well, the question of how to diversify the ESs remains underexplored. In this paper, we propose a method for diversifying ESs and a framework, called DualDiv, that recommends items by diversifying both the items and the ESs. Our experimental results show that DualDiv can increase the diversity of the items and the ESs without largely reducing the recommendation accuracy.\",\"PeriodicalId\":215384,\"journal\":{\"name\":\"Proceedings of the 13th ACM Conference on Recommender Systems\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3298689.3347063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3298689.3347063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在推荐系统中,项目多样化和可解释的推荐提高了用户的满意度。与传统的可解释推荐不同,可解释混合推荐为每个项目显示多个解释,因此对用户更有利。当显示多个解释时,一个问题是类似的解释样式集(ESs),如基于用户的、基于项目的和基于流行的,可能会显示类似的项目。尽管项目多样化已经得到了很好的研究,但如何使ESs多样化的问题仍未得到充分探讨。在本文中,我们提出了一种多样化的方法,并提出了一个名为DualDiv的框架,该框架通过多样化项目和ESs来推荐项目。我们的实验结果表明,DualDiv可以在不显著降低推荐准确率的情况下增加条目和ESs的多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DualDiv: diversifying items and explanation styles in explainable hybrid recommendation
In recommender systems, item diversification and explainable recommendations improve users' satisfaction. Unlike traditional explainable recommendations that display a single explanation for each item, explainable hybrid recommendations display multiple explanations for each item and are, therefore, more beneficial for users. When multiple explanations are displayed, one problem is that similar sets of explanation styles (ESs) such as user-based, item-based, and popularity-based may be displayed for similar items. Although item diversification has been studied well, the question of how to diversify the ESs remains underexplored. In this paper, we propose a method for diversifying ESs and a framework, called DualDiv, that recommends items by diversifying both the items and the ESs. Our experimental results show that DualDiv can increase the diversity of the items and the ESs without largely reducing the recommendation accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信