用于结肠NBI内镜诊断支持的两阶段病变识别系统

Yongfei Wu, Daisuke Katayama, Tetsushi Koide, Toru Tamaki, Shigeto Yoshida, Shin Morimoto, Yuki Okamoto, S. Oka, Shinji Tanaka
{"title":"用于结肠NBI内镜诊断支持的两阶段病变识别系统","authors":"Yongfei Wu, Daisuke Katayama, Tetsushi Koide, Toru Tamaki, Shigeto Yoshida, Shin Morimoto, Yuki Okamoto, S. Oka, Shinji Tanaka","doi":"10.1109/ITC-CSCC58803.2023.10212618","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a two-stage Computer-Aided Diagnosis (CAD) system for lesion recognition using detecting and classifying method based on deep learning architecture. The proposed CAD system can presents quantitative inference results from images token by colorectal Narrow Band Imaging (NBI) endoscopy to clinical doctors, which aims to reduce the variation and burden of diagnoses due to the experience of diagnosing doctors. As a result, for our test dataset, the current accuracy has reached 67% for magnified images.","PeriodicalId":220939,"journal":{"name":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Two-Stage Lesion Recognition System for Diagnostic Support in Colon NBI Endoscopy\",\"authors\":\"Yongfei Wu, Daisuke Katayama, Tetsushi Koide, Toru Tamaki, Shigeto Yoshida, Shin Morimoto, Yuki Okamoto, S. Oka, Shinji Tanaka\",\"doi\":\"10.1109/ITC-CSCC58803.2023.10212618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a two-stage Computer-Aided Diagnosis (CAD) system for lesion recognition using detecting and classifying method based on deep learning architecture. The proposed CAD system can presents quantitative inference results from images token by colorectal Narrow Band Imaging (NBI) endoscopy to clinical doctors, which aims to reduce the variation and burden of diagnoses due to the experience of diagnosing doctors. As a result, for our test dataset, the current accuracy has reached 67% for magnified images.\",\"PeriodicalId\":220939,\"journal\":{\"name\":\"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITC-CSCC58803.2023.10212618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC-CSCC58803.2023.10212618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于深度学习体系结构的两阶段病变识别计算机辅助诊断(CAD)系统。本文提出的CAD系统可以将结直肠狭窄带成像(NBI)内窥镜图像标记的定量推理结果提供给临床医生,以减少由于诊断医生的经验而导致的诊断变化和负担。因此,对于我们的测试数据集,对于放大图像,目前的准确率达到67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Two-Stage Lesion Recognition System for Diagnostic Support in Colon NBI Endoscopy
In this paper, we propose a two-stage Computer-Aided Diagnosis (CAD) system for lesion recognition using detecting and classifying method based on deep learning architecture. The proposed CAD system can presents quantitative inference results from images token by colorectal Narrow Band Imaging (NBI) endoscopy to clinical doctors, which aims to reduce the variation and burden of diagnoses due to the experience of diagnosing doctors. As a result, for our test dataset, the current accuracy has reached 67% for magnified images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信