椭圆多对数与双环费曼积分

Johannes Broedel, C. Duhr, F. Dulat, B. Penante, L. Tancredi
{"title":"椭圆多对数与双环费曼积分","authors":"Johannes Broedel, C. Duhr, F. Dulat, B. Penante, L. Tancredi","doi":"10.22323/1.303.0005","DOIUrl":null,"url":null,"abstract":"We review certain classes of iterated integrals that appear in the computation of Feynman integrals that involve elliptic functions. These functions generalise the well-known class of multiple polylogarithms to elliptic curves and are closely related to the elliptic multiple polylogarithms (eMPLs) studied in the mathematics literature. When evaluated at certain special values of the arguments, eMPLs reduce to another class of special functions, defined as iterated integrals of Eisenstein series. As a novel application of our formalism, we illustrate how a class of special functions introduced by Remiddi and one of the authors can always naturally be expressed in terms of either eMPLs or iterated integrals of Eisenstein series for the congruence subgroup $\\Gamma(6)$.","PeriodicalId":140132,"journal":{"name":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Elliptic polylogarithms and two-loop Feynman integrals\",\"authors\":\"Johannes Broedel, C. Duhr, F. Dulat, B. Penante, L. Tancredi\",\"doi\":\"10.22323/1.303.0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We review certain classes of iterated integrals that appear in the computation of Feynman integrals that involve elliptic functions. These functions generalise the well-known class of multiple polylogarithms to elliptic curves and are closely related to the elliptic multiple polylogarithms (eMPLs) studied in the mathematics literature. When evaluated at certain special values of the arguments, eMPLs reduce to another class of special functions, defined as iterated integrals of Eisenstein series. As a novel application of our formalism, we illustrate how a class of special functions introduced by Remiddi and one of the authors can always naturally be expressed in terms of either eMPLs or iterated integrals of Eisenstein series for the congruence subgroup $\\\\Gamma(6)$.\",\"PeriodicalId\":140132,\"journal\":{\"name\":\"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.303.0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.303.0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们回顾了费曼积分计算中涉及椭圆函数的几类迭代积分。这些函数将众所周知的多重多对数推广到椭圆曲线,并且与数学文献中研究的椭圆多重多对数(eMPLs)密切相关。当在参数的某些特殊值处求值时,empl简化为另一类特殊函数,定义为爱森斯坦级数的迭代积分。作为我们的形式主义的一个新应用,我们说明了由Remiddi和其中一位作者引入的一类特殊函数如何总是可以自然地表示为同余子群$\Gamma(6)$的empl或Eisenstein级数的迭代积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elliptic polylogarithms and two-loop Feynman integrals
We review certain classes of iterated integrals that appear in the computation of Feynman integrals that involve elliptic functions. These functions generalise the well-known class of multiple polylogarithms to elliptic curves and are closely related to the elliptic multiple polylogarithms (eMPLs) studied in the mathematics literature. When evaluated at certain special values of the arguments, eMPLs reduce to another class of special functions, defined as iterated integrals of Eisenstein series. As a novel application of our formalism, we illustrate how a class of special functions introduced by Remiddi and one of the authors can always naturally be expressed in terms of either eMPLs or iterated integrals of Eisenstein series for the congruence subgroup $\Gamma(6)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信